## Multiplier-less Multiplication by Constants

Dr. Shoab A. Khan

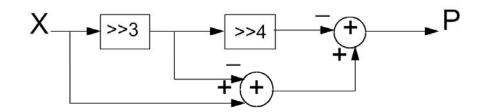
## **Multiplication by Constant**

- In many algorithms a large percentage of multiplications are by constants
- Complexity of a general purpose multiplier is not required
  - Generate Partial Products (PPs) only for 1s in the constant multiplier
- The number of PPs can be further reduced using canonic sign digit format

## **Example: FIR Filter**

- In an FIR filter all coefficients are constant
- For a fully parallel implementation, general purpose multipliers are not required
- Coefficients are converted in canonic sign digit form

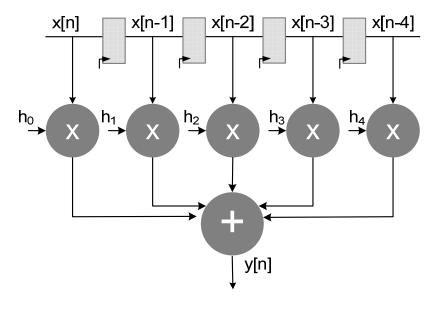
## Canonic Sign Digit (CSD)


- No 2 consecutive bits are non-zero
- Contains minimum possible number of non-zero bits
- Representation is unique

$$C = \sum_{i=0}^{N-1} s_i \ 2^i \text{ for } s_i \in \{-1, 0, 1\}$$

## Canonic Sign Digit (CSD)

## CSD is obtained using string property Examples a Q1.7 format number


- **01111111** =  $2^0 2^{-7} = 10000001$
- $01101111 \rightarrow 01110001 \rightarrow 10010001$ 
  - $k = 2^{\circ} 2^{-3} 2^{-7}$
  - $Kx = x2^{0} x2^{-3} x2^{-7}$



## **FIR filter**

Convolution summation with constant coefficients h[k]

$$y[n] = \sum_{k=0}^{N-1} h[k] x[n-k]$$



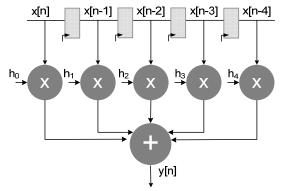
## **Conversion of FIR Coefficient in CSD**

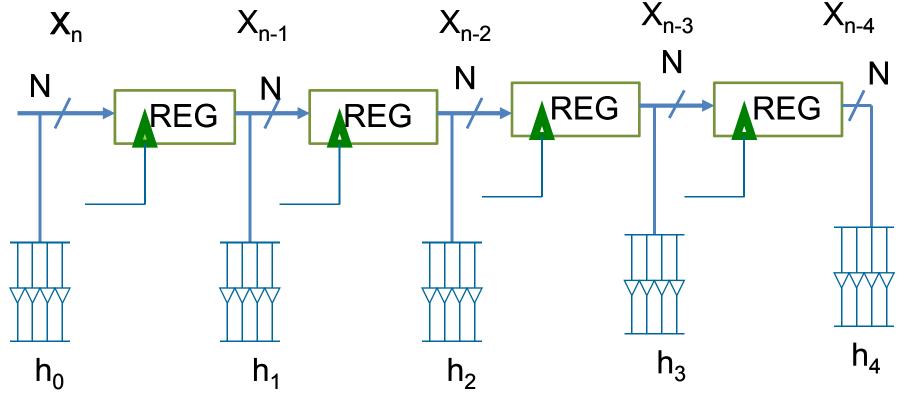
- Only one nonzero CSD digit for approximately each 20 dB of stopband attenuation
- Four non-zero digits per coefficient for 80 dB stopband attenuation

## Example: CSD Representation

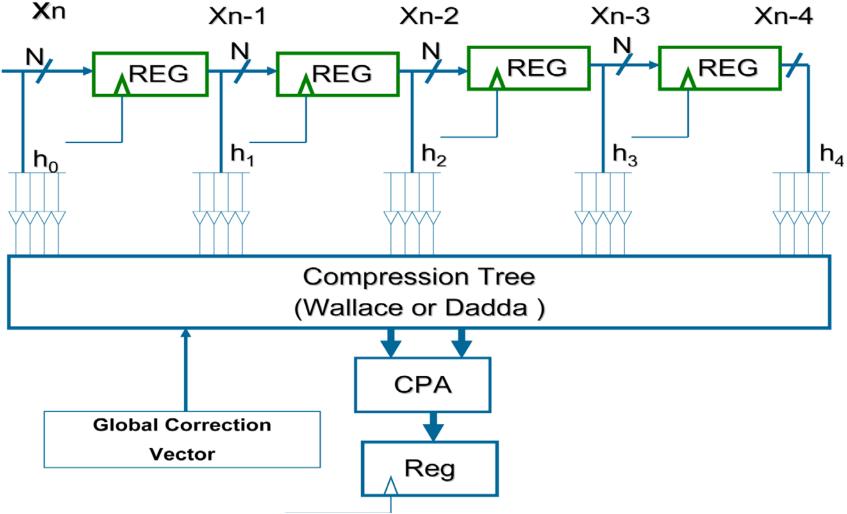
□ Let a coefficient is

0 1 1 0 1 1 1 0 1 1 0 1 1 0 1 1 Converting to CSD and keeping 4 non-zero digits:


1
 0
 
$$\overline{1}$$
 0
 0
  $\overline{1}$ 
 0
 0
  $\overline{1}$ 


 2<sup>0</sup>
 2<sup>-1</sup>
 2<sup>-2</sup>
 2<sup>-3</sup>
 2<sup>-4</sup>
 2<sup>-5</sup>
 2<sup>-6</sup>
 2<sup>-7</sup>
 2<sup>-8</sup>
 2<sup>-9</sup>
 2<sup>-10</sup>

## **CSD** multiplier




## CSD Multiplier in 5-coeff FIR filter





#### An Optimal Direct Form FIR Filter Architecture



## **Example: CSD Representation**

## 

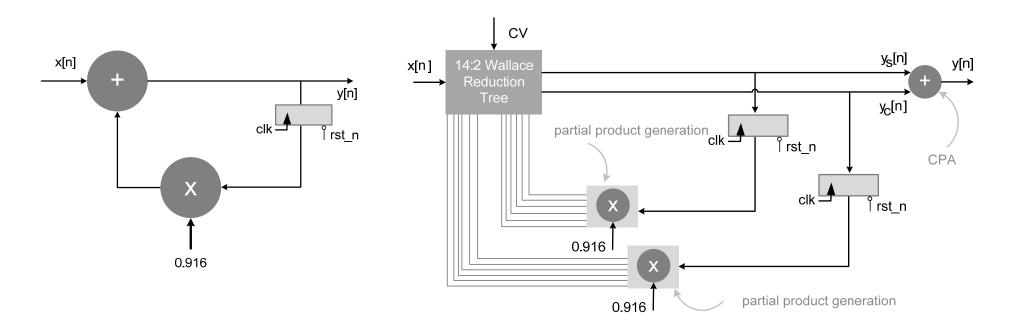
## **CSD FIR paper**

#### CANONICAL SIGNED DIGIT REPRESENTATION FOR FIR DIGITAL FILTERS

|     |               | h(k)    | h(k) Canonical      |      |           |       |  |  |  |  |
|-----|---------------|---------|---------------------|------|-----------|-------|--|--|--|--|
| k   | <b>h(k</b> )  | Rounded | Signed Digit        | Adds | Subtracts | Total |  |  |  |  |
| 0   | -0.0057534026 | -575    | 0000 0010 0100 0001 | 1    | 2         | 3     |  |  |  |  |
| 1   | 0.00099026691 | 99      | 0000 0001 0100 0101 | 2    | 2         | 4     |  |  |  |  |
| 2   | 0.0075733471  | 757     | 0000 0101 0001 0101 | 3    | 2         | 5     |  |  |  |  |
| 3   | -0.0065141204 | -651    | 0000 0010 1001 0101 | 2    | 3         | 5     |  |  |  |  |
| 4   | 0.013960509   | 1396    | 0000 1010 1001 0100 | 2    | 3         | 5     |  |  |  |  |
| 5   | 0.0022951644  | 230     | 0000 0001 0010 1010 | 2    | 2         | 4     |  |  |  |  |
| 6   | -0.019994041  | -1999   | 0000 1000 0101 0001 | 2    | 2         | 4     |  |  |  |  |
| 7   | 0.0071369656  | 714     | 0000 0101 0100 1010 | 3    | 2         | 5     |  |  |  |  |
| 8   | -0.039657373  | -3966   | 0001 0000 1000 0010 | 2    | 1         | 3     |  |  |  |  |
| 9   | 0.011260066   | 1126    | 0000 0100 1010 1010 | 3    | 2         | 5     |  |  |  |  |
| 10  | 0.066233635   | 6623    | 0010 1010 0010 0001 | 2    | 3         | 5     |  |  |  |  |
| 11  | -0.010497202  | -1050   | 0000 0100 0010 1010 | 1    | 3         | 4     |  |  |  |  |
| 12  | 0.08513616    | 8514    | 0010 0001 0100 0010 | 4    | 0         | 4     |  |  |  |  |
| 13  | -0.12024988   | -12025  | 0101 0001 0000 1001 | 3    | 2         | 5     |  |  |  |  |
| 14  | -0.2967858    | -29679  | 1001 0100 0001 0001 | 3    | 2         | 5     |  |  |  |  |
| 15  | 0.30410913    | 30411   | 1000 1001 0101 0101 | 2    | 5         | 7     |  |  |  |  |
| 16  | 0.30410913    | 30411   | 1000 1001 0101 0101 | 2    | 5         | 7     |  |  |  |  |
| 17  | -0.2967858    | -29679  | 1001 0100 0001 0001 | 3    | 2         | 5     |  |  |  |  |
| 18  | -0.12024988   | -12025  | 0101 0001 0000 1001 | 3    | 2         | 5     |  |  |  |  |
| 19  | 0.08513616    | 8514    | 0010 0001 0100 0010 | 4    | 0         | 4     |  |  |  |  |
| 20  | -0.010497202  | -1050   | 0000 0100 0010 1010 | 1    | 4         | 5     |  |  |  |  |
| 21  | 0.066233635   | 6623    | 0010 1010 0010 0001 | 2    | 3         | 5     |  |  |  |  |
| 22  | 0.011260066   | 1126    | 0000 0100 1010 1010 | 3    | 2         | 5     |  |  |  |  |
| 23  | -0.039657373  | -3966   | 0001 0000 1000 0010 | 2    | 1         | 3     |  |  |  |  |
| 24  | 0.0071369656  | 714     | 0000 0101 0100 1010 | 3    | 2         | 5     |  |  |  |  |
| 25  | -0.019994041  | -1999   | 0000 1000 0101 0001 | 2    | 2         | 4     |  |  |  |  |
| 26  | 0.0022951644  | 230     | 0000 0001 0010 1010 | 2    | 2         | 4     |  |  |  |  |
| 27  | 0.013960509   | 1396    | 0000 1010 1001 0100 | 2    | 3         | 5     |  |  |  |  |
| 28  | -0.0065141204 | -651    | 0000 0010 1001 0101 | 2    | 3         | 5     |  |  |  |  |
| 29  | 0.0075733471  | 757     | 0000 0101 0001 0101 | 3    | 2         | 5     |  |  |  |  |
| 30  | 0.00099026691 | 99      | 0000 0001 0100 0101 | 2    | 2         | 4     |  |  |  |  |
| 31_ | -0.0057534026 | -575    | 0000 0010 0100 0001 | 1    | 2         | 3     |  |  |  |  |
|     |               |         | TOTAL ADDS/SUBS     |      |           |       |  |  |  |  |

Course Mat

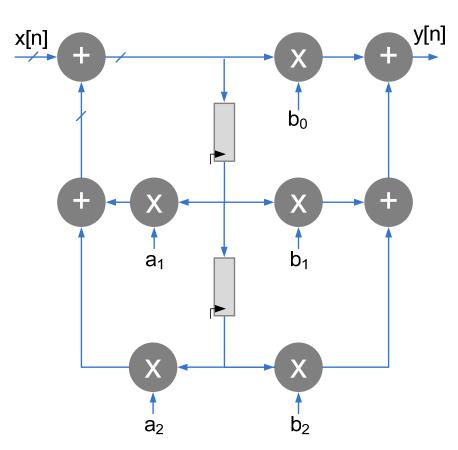
| 8 CSD<br>Digits | 7 CSD<br>Digits | 6 CSD<br>Digits   | 5 CSD<br>Digits   | 4 CSD<br>Digits          | 3 CSD<br>Digits                      | 2 CSD<br>Digits    |  |  |
|-----------------|-----------------|-------------------|-------------------|--------------------------|--------------------------------------|--------------------|--|--|
| -575            | -575            | -575              | -575              | -575                     | -575                                 | -576               |  |  |
| 99              | 99              | 99                | 99                | 99                       | ani a <b>⊈¶0</b> í ar t              | . 96               |  |  |
| 757             | 757             | 757               | 757               |                          | ,                                    | 768                |  |  |
| -651            | <u>-651</u>     | 651               | -651              | <u>ే సిశ్చి క్రి. 28</u> | <sup>***</sup> *** <b>*656</b> ***** | -640               |  |  |
| 1396            | 1396            | 1396              | 1396              | i                        |                                      |                    |  |  |
| 230             | 230             | 230               | 230               | 230                      | <b></b> 232                          | ***224             |  |  |
| -1999           | -1999           | -1999             | -1999             | -19 <del>9</del> 9       | 2000 i                               | -2016              |  |  |
| 7]4             | 7]4             | 714               | 714               |                          | . * <b>* 704</b>                     | 768                |  |  |
| -3966           | -3966           | -3966             | -3966             | -3966                    | -3966                                | -3968              |  |  |
| 1126            | 1126            | 1126              | 1126              | 1128                     | 1,1,20                               | 1152               |  |  |
| 6623            | 6623            | 6623              | 6623              | őő. 6 <b>624</b>         | 6656                                 | 614/4              |  |  |
| -1050           | -1050           | -1050             | -1050             | -1050                    | - 1048                               | -4056              |  |  |
| 8514            | 8514            | 8514              | 8514              | 8514                     | 8512                                 | 8448               |  |  |
| -12025          | -12025          | -12025            | -12025            | 12024                    | <u>:</u> 12032:                      | 12288              |  |  |
| -29679          | -29679          | -29679            | -29679            | 29680                    | 29696                                | -28672             |  |  |
| 30411           | 30411           | ¦° °∂ 30412 ∘ × ½ | <b>::::304</b> 16 | 30400                    | <u>*</u> *30464****                  | * ** <b>307</b> 20 |  |  |


## **Optimized DFG Transformation**

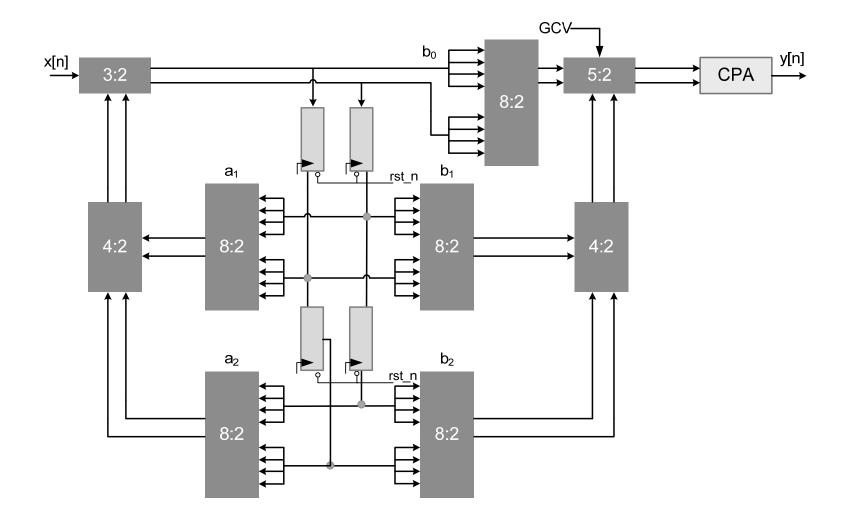
- Use compression tree and remove the use of CPA in a feedback loop
- The result is kept in partial sum and partial carry form
- The first order difference equation changes to

$$\{y_s[n], y_c[n]\} = 0.916y_s[n-1] + 0.916y_c[n-1] + x[n]$$

## Example 1: First Order IIR Filter

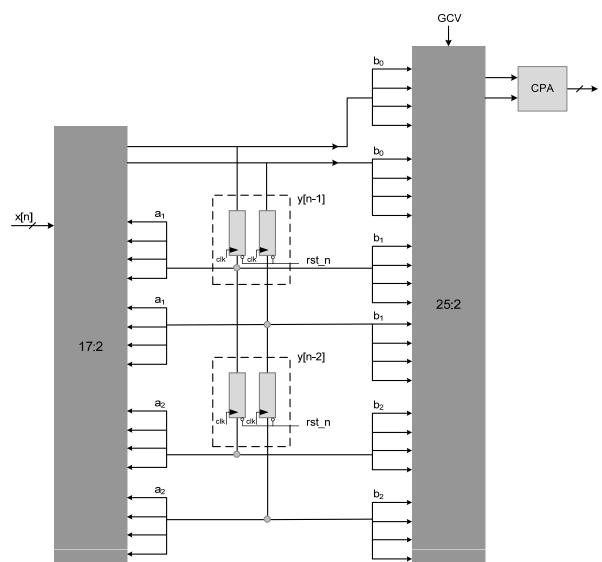

DFG with one adder and one multiplier in the critical path.



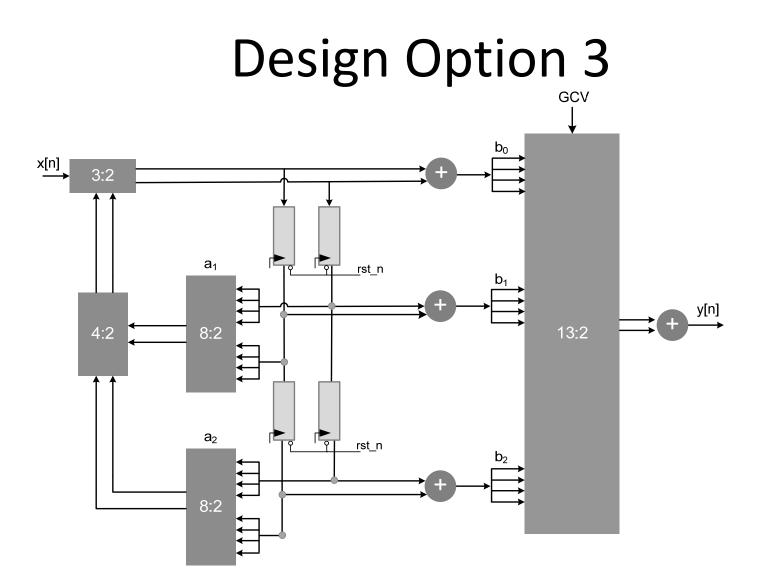

Transformed DFG with Wallace compression tree and CPA outside the feedback loop

## Example 2: DFT 2<sup>nd</sup> Order IIR Filter

 $y[n] = a_1 y[n-1] + a_2 y[n-2] + b_0 x[n] + b_1 x[n-1] + b_2 x[n-2]$ 

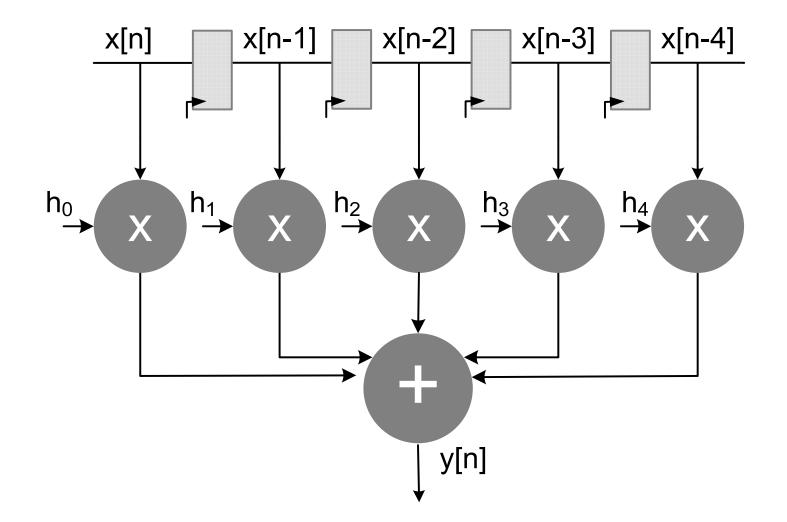



## **Example: Optimal Mapping: Design Option 1**

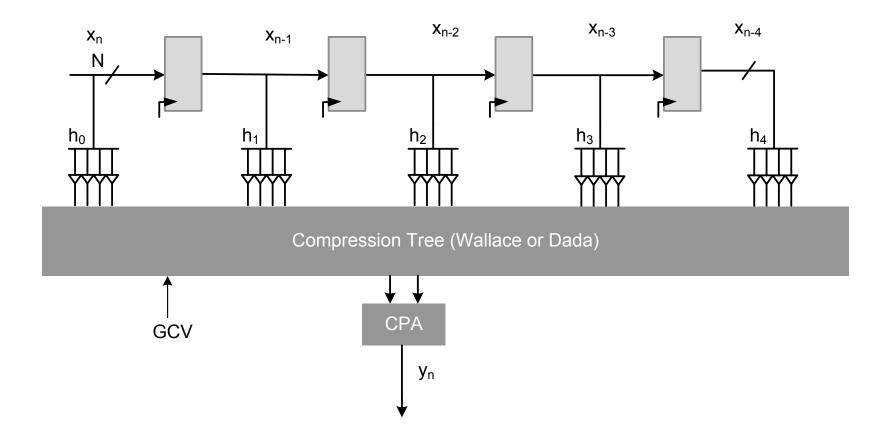



Optimized implementation with CSD multipliers, compression trees and CPA outside the IIR filter  $^{\mbox{\tiny 18}}$ 

## **Design Option 2**




Using unified reduction trees for the feedforward and feedback computations and CPA outside the filter




CPA outside the feedback loop

## **FIR Filter: Direct Form**



# All multiplications are implemented as one compression tree and a single CPA



## **Example: Conversion to Fixed-Point**

```
h[n] = [0.0246 \quad 0.2344 \quad 0.4821 \quad 0.2344 \quad 0.0246]
```

```
h[n] = round(h[n]^{*}2^{15}) =
```

```
[805 7680 15798 7680 805]
```

```
16'b0000_0110_0100_1010
```

```
16'b0011_1100_0000_0000
```

```
16'b0011_1101_1011_0110
```

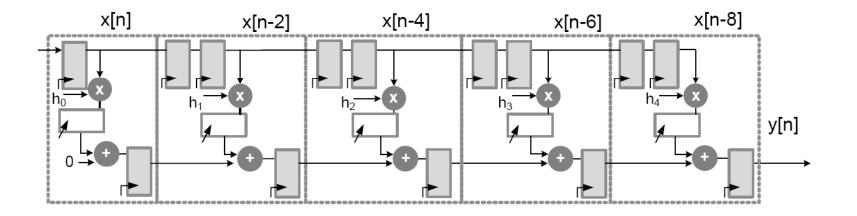
```
16'b0011_1100_0000_0000
```

```
16'b0000_0110_0100_1010
```

**Conversion in CSD** 0000 1010 0100 1010 0100 0100 0000 0000 0100 0010 0100 1010 0100 0100 0000 0000 0000 - 1010 0100 1010

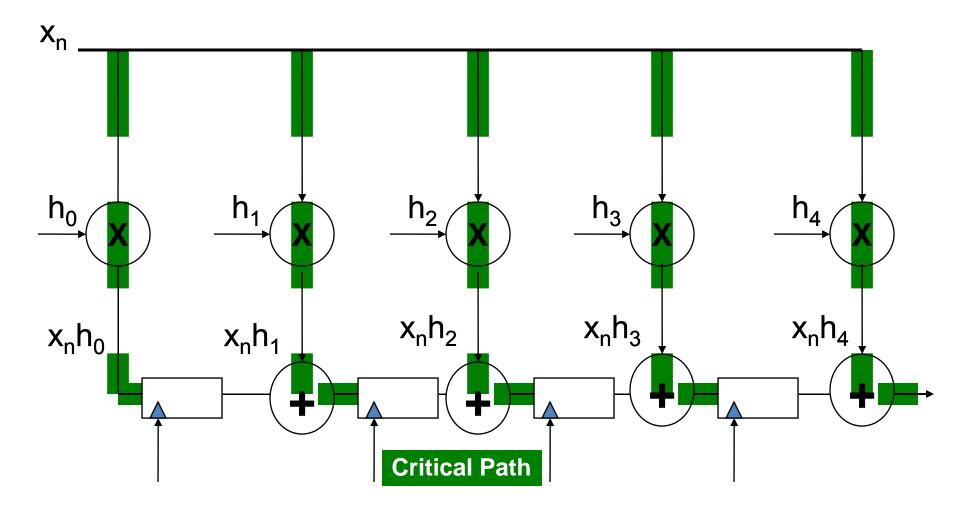
Keeping maximum of 4 non-zero CSD in each coefficient results in

0000 - 1010 - 0100 - 10100 0100 0000 0000 0100\_0010 0100 1 0100 - 0100 - 0000 - 00000000 1010 0100 1

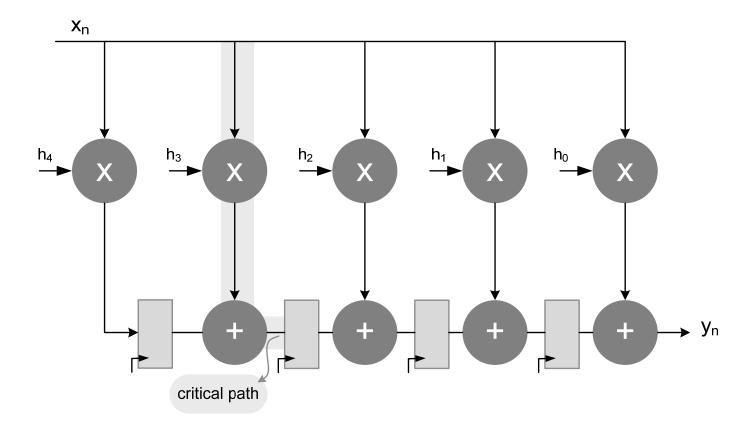

## Input to Compression Tree

$$y[n] = (-x[n]2^{-4} + x[n]2^{-6} + x[n]2^{-9} + x[n]2^{-12}) + (x[n-1]2^{-1} - x[n]2^{-5}) + (x[n-2]2^{-1} - x[n-2]2^{-6} - x[n-2]2^{-9} - x[n-2]2^{-12}) + (x[n-3]2^{-1} - x[n-3]2^{-5}) + (-x[n-4]2^{-4} + x[n-4]2^{-6} + x[n-4]2^{-9} + x[n-4]2^{-12})$$

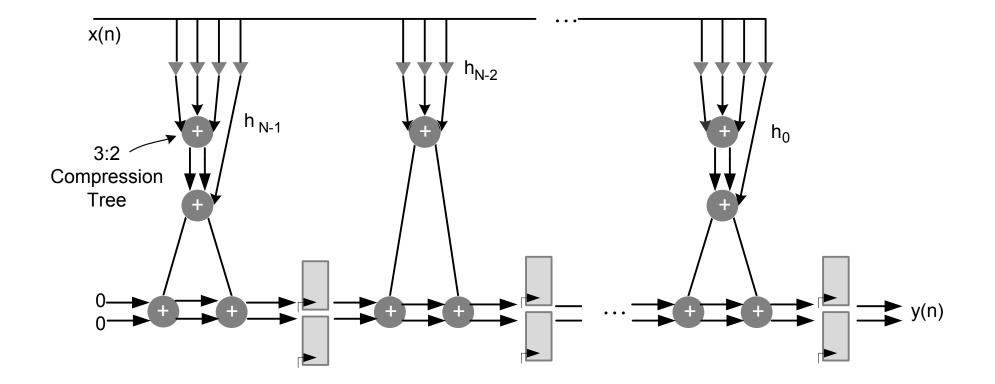
# CV Computation for first CSD multiplier $0000010\overline{1}001001$


|   |   |   |   |   | 1                      |                        | 1                      |                        |                        | 1                      |                        |                        | 1                      |                        |                        |                        |                        |                        |                       |                       |                         |
|---|---|---|---|---|------------------------|------------------------|------------------------|------------------------|------------------------|------------------------|------------------------|------------------------|------------------------|------------------------|------------------------|------------------------|------------------------|------------------------|-----------------------|-----------------------|-------------------------|
| 1 | 1 | 1 | 1 | 1 | <i>x</i> <sub>15</sub> | <i>x</i> <sub>14</sub> | <i>x</i> <sub>13</sub> | <i>x</i> <sub>12</sub> | <i>x</i> <sub>11</sub> | <i>x</i> <sub>10</sub> | <i>x</i> 9             | x <sub>8</sub>         | <i>x</i> <sub>7</sub>  | <i>x</i> <sub>6</sub>  | <i>x</i> <sub>5</sub>  | <i>x</i> <sub>4</sub>  | <i>x</i> <sub>3</sub>  | <i>x</i> <sub>2</sub>  | $x_1$                 | <i>x</i> <sub>0</sub> |                         |
| 1 | 1 | 1 | 1 | 1 | 1                      | 1                      | <i>x</i> <sub>15</sub> | <i>x</i> <sub>14</sub> | <i>x</i> <sub>13</sub> | <i>x</i> <sub>12</sub> | $\overline{x}_{11}$    | <i>x</i> <sub>10</sub> | $\overline{x}_9$       | $\overline{x}_8$       | $\overline{x}_7$       | <u>x</u> 6             | <i>x</i> <sub>5</sub>  | $\overline{x_4}$       | <i>x</i> <sub>3</sub> | $\overline{x}_2$      | - <i>x</i> <sub>1</sub> |
| 1 | 1 | 1 | 1 | 1 | 1                      | 1                      | 1                      | 1                      | 1                      | <i>x</i> <sub>15</sub> | <i>x</i> <sub>14</sub> | <i>x</i> <sub>13</sub> | <i>x</i> <sub>12</sub> | <i>x</i> <sub>11</sub> | <i>x</i> <sub>10</sub> | <i>x</i> 9             | <i>x</i> <sub>8</sub>  | <i>x</i> <sub>7</sub>  | <i>x</i> <sub>6</sub> | <i>x</i> <sub>5</sub> | <i>x</i> <sub>4</sub>   |
| 1 | 1 | 1 | 1 | 1 | 1                      | 1                      | 1                      | 1                      | 1                      | 1                      | 1                      | 1                      | $\overline{x}_{15}$    | <i>x</i> <sub>14</sub> | <i>x</i> <sub>13</sub> | <i>x</i> <sub>12</sub> | <i>x</i> <sub>11</sub> | <i>x</i> <sub>10</sub> | <i>x</i> 9            | <i>x</i> <sub>8</sub> | <i>x</i> <sub>7</sub>   |

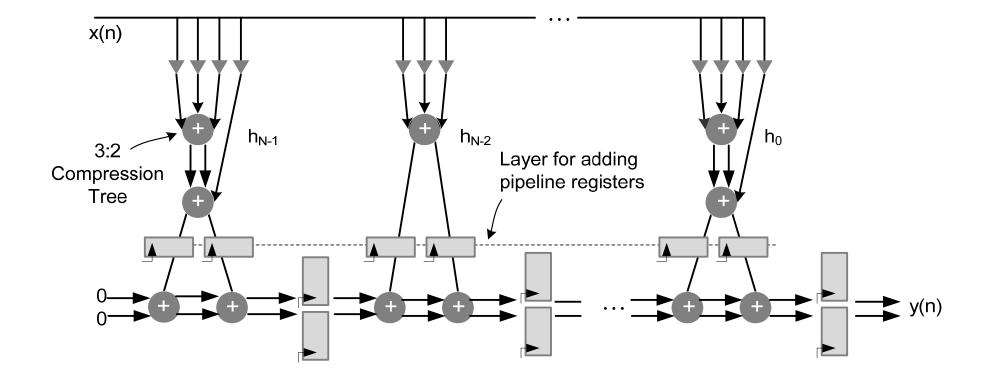
## **Pipelined DF FIR Filter**



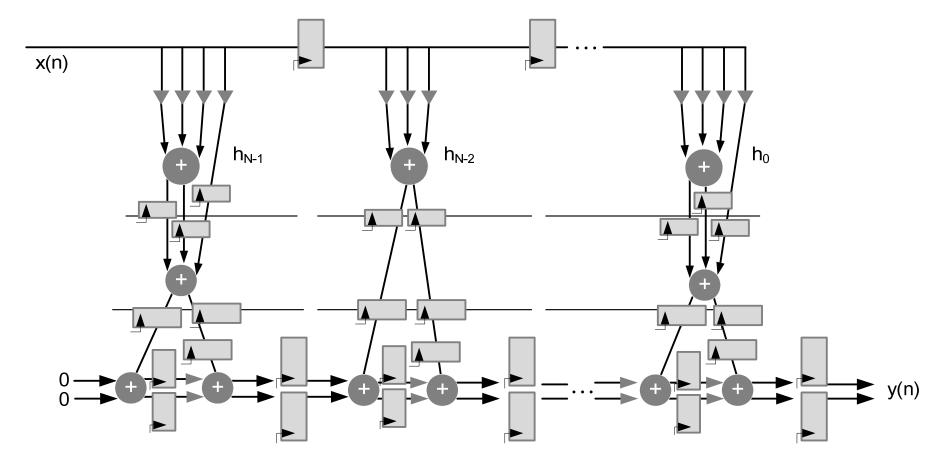

#### Pipeline direct form FIR filter for FPGAs with DSP48 blocks


## **Transpose Direct Form FIR Filter**




## **Critical Path**




## **Filter Implementation**



#### TD FIR with one stage of pipelining registers



### Deeply pipelined TDF FIR filter with critical path equal to one full adder delay

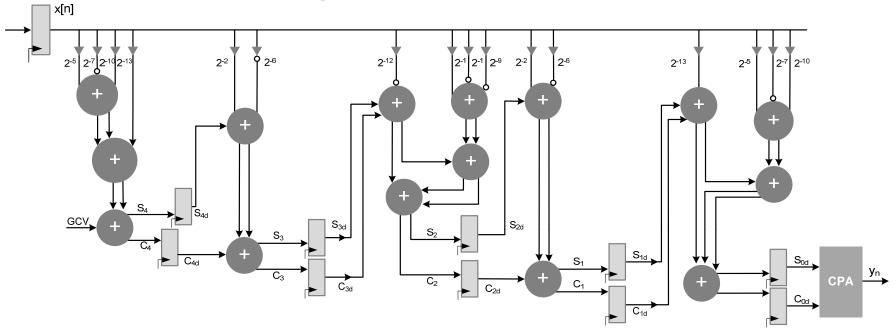


#### Same Example

## 0000 - 1010 - 0100 - 10100 - 0100 - 0000 - 00000100\_0010 0100 1 0100 - 0100 - 0000 - 0000 $0000 \ 1010 \ 0100 \ 1$

## **TDF Implementation**

$$M_{4} = x[n]2^{5} - x[n]2^{7} + x[n]2^{10} + x[n]2^{13}$$


$$M_{3} = x[n]2^{2} - x[n]2^{6}$$

$$M_{2} = x[n]2^{1} - x[n]2^{6} - x[n]2^{9} - x[n]2^{12}$$

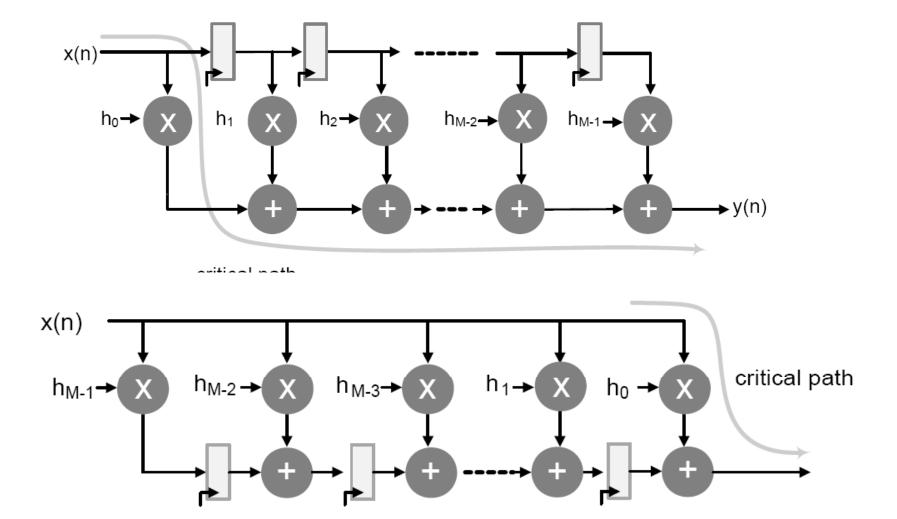
$$M_{1} = x[n]2^{2} - x[n]2^{6}$$

$$M_{0} = x[n]2^{5} - x[n]2^{7} + x[n]2^{10} + x[n]2^{13}$$

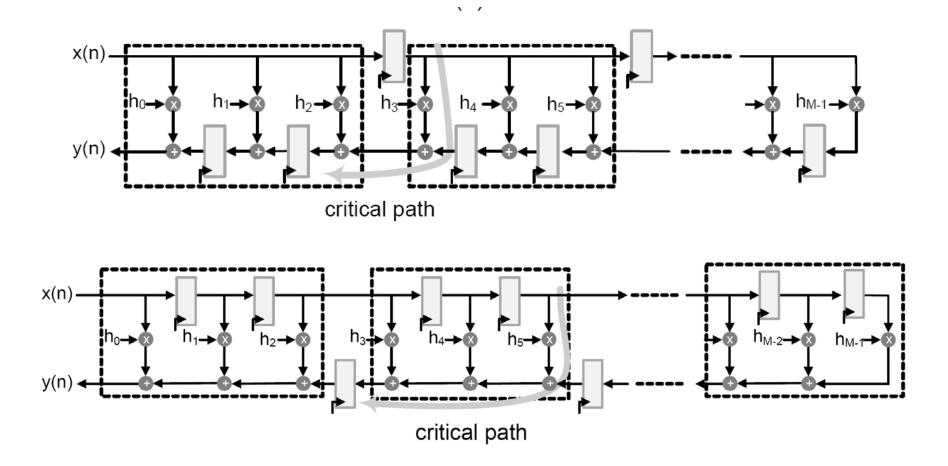
## Example from the Book



$$\{c_4, s_4\} = x[n]2^{-5} - x[n]2^{-7} + x[n]2^{-10} + x[n]2^{-13} + 0 + 0$$


$$\{c_3, s_3\} = x[n]2^{-2} - x[n]2^{-6} + c_{4d} + s_{4d}$$

$$\{c_2, s_2\} = x[n]2^{-1} - x[n]2^{-6} - x[n]2^{-9} - x[n]2^{-12} + c_{3d} + s_{3d}$$

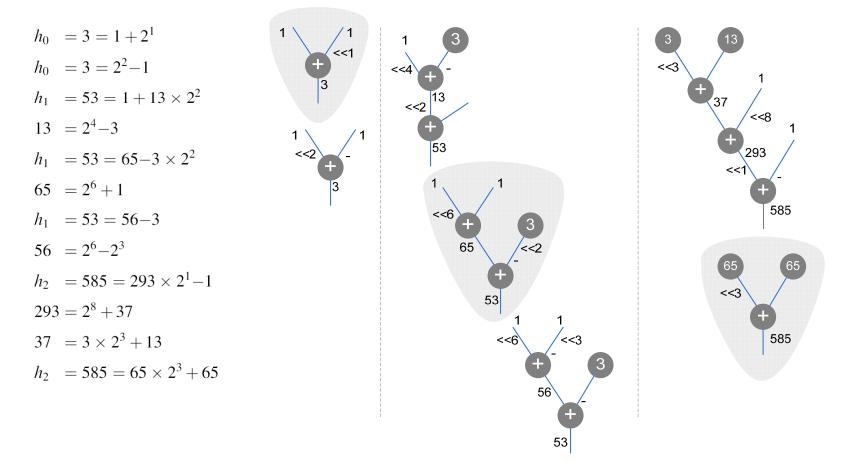

$$\{c_1, s_1\} = x[n]2^{-2} - x[n]2^{-6} + c_{2d} + s_{2d}$$

$$\{c_0, s_0\} = x[n]2^{-5} - x[n]2^{-7} + x[n]2^{-10} + x[n]2^{-13} + c_{1d} + s_{1d}$$

### Hybrid FIR Filter Structure



### **Hybrid Designs**




**Complexity Reduction** 

### **ADV DSD CONTENTS**

### **Complexity Reduction**

- Constituent sub graphs that are shared in the original graph
- **Example:** three multipliers, 3, 53 and 585 with x



Course Material from text book "Digital Design of Signal Processing Systems" by Dr. Shoab A. Khan

$$h_{0} = 3 = 1 + 2^{1}$$

$$h_{0} = 3 = 2^{2} - 1$$

$$h_{1} = 53 = 1 + 13 \times 2^{2}$$

$$13 = 2^{4} - 3$$

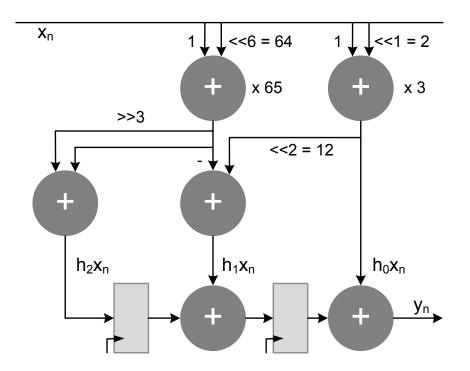
$$h_{1} = 53 = 65 - 3 \times 2^{2}$$

$$65 = 2^{6} + 1$$

$$h_{1} = 53 = 56 - 3$$

$$56 = 2^{6} - 2^{3}$$

$$h_{2} = 585 = 293 \times 2^{1} - 1$$


$$293 = 2^{8} + 37$$

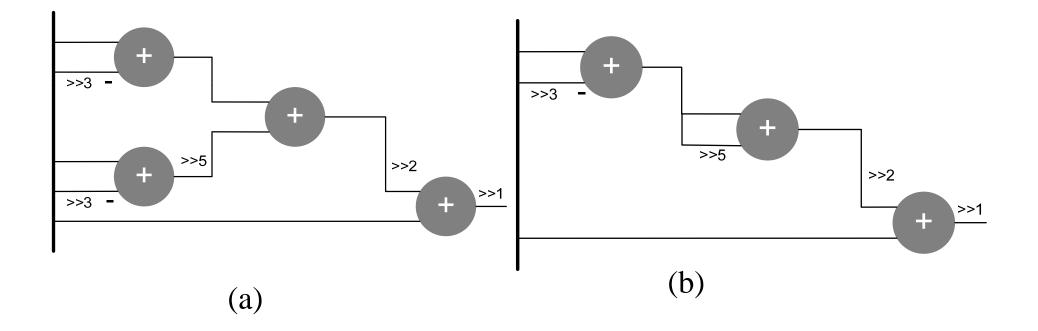
$$37 = 3 \times 2^{3} + 13$$

$$h_{2} = 585 = 65 \times 2^{3} + 65$$

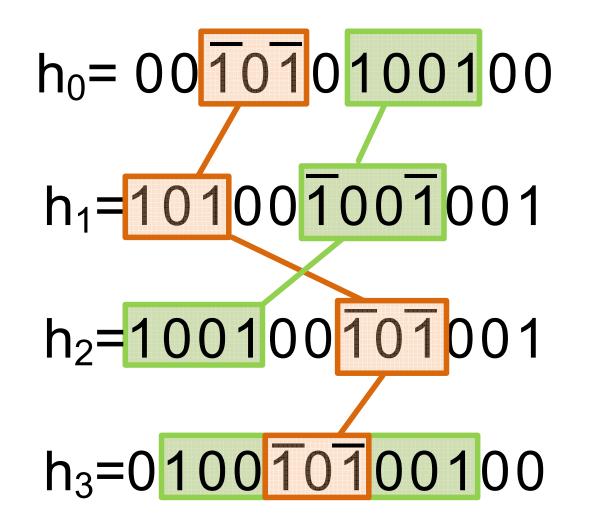
### **Optimized Implementation**

Selected sub-graphs from previous slide




- □ Find common sub-expression
- Eliminate their re-use

$$h_0 x_n = (x_n \gg 1) + (x_n \gg 2) + (x_n \gg 3)$$
  
$$h_1 x_n = (x_n \gg 1) + (x_n \gg 3) + (x_n \gg 4)$$


$$c_0 = (x_n \gg 1) + (x_n \gg 3)$$

$$h_0 x_n = c_0 + (x_n \gg 2)$$
  
 $h_1 x_n = c_0 + (x_n \gg 4)$ 

#### **Example: Common Sub-expression Elimination**



Horizontal Common Sub-expressions for the example in the text



### **Vertical Sub-expressions Elimination**

$$y_{n} = x_{n}z^{-3}h_{3} + x_{n}z^{-2}h_{2} + x_{n}z^{-1}h_{1} + x_{n}h_{0} \qquad h_{3} = 1 \quad 0 \quad 0 \quad 0 \quad 0$$

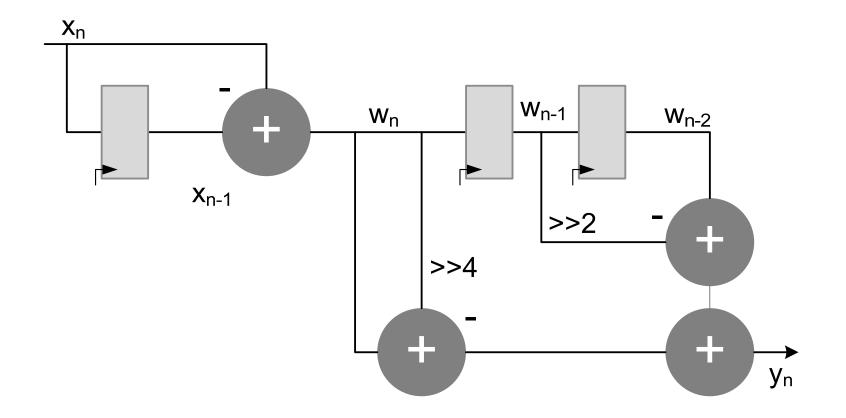
$$h_{2} = \overline{1} \quad 0 \quad \overline{1} \quad 0 \quad 0$$

$$h_{1} = 1 \quad 0 \quad 1 \quad 0 \quad \overline{1}$$

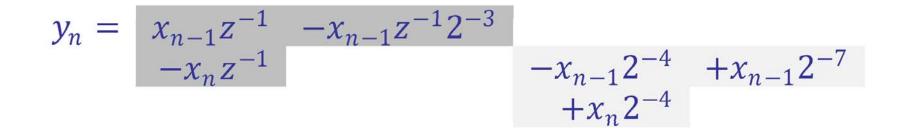
$$h_{1} = 1 \quad 0 \quad 1 \quad 0 \quad \overline{1}$$

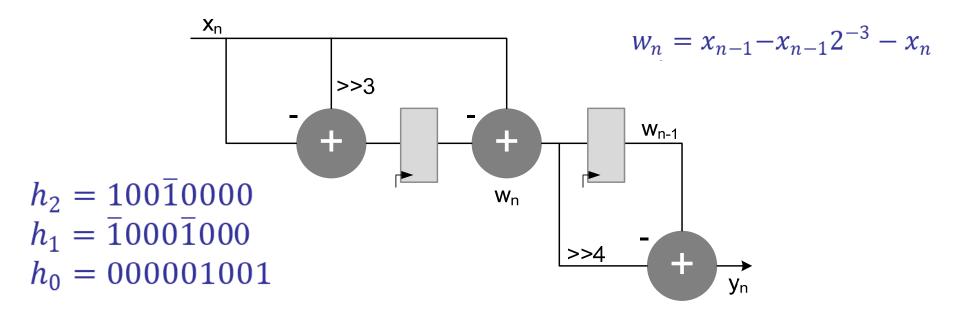
$$h_{0} = \overline{1} \quad 0 \quad 0 \quad 0 \quad 1$$

$$+x_{n}z^{-1} + x_{n}z^{-1}2^{-2} - x_{n}z^{-1}2^{-4}$$


$$+x_{n}z^{-4} + x_{n}z^{-4}$$

### **Common Sub Expression**


$$y_n = \begin{array}{c} x_{n-1}z^{-2} \\ -x_nz^{-2} \\ +x_{n-1}z^{-1}z^{-2} \\ -x_n \end{array}$$


$$-x_nz^{-1}z^{-2} -x_{n-1}z^{-4} \\ +x_nz^{-4}z^{-4} \end{array}$$

# Optimized implementation exploiting vertical common sub-expressions



### Example of horizontal and vertical subexpressions elimination





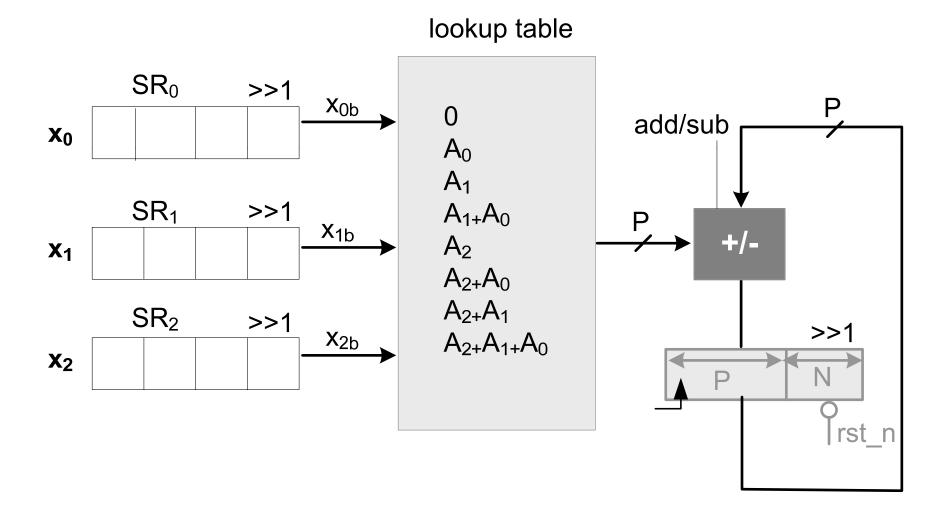
### **Distributed Arithmetic Based Design**

• Yet another way of looking at dot product design

$$-(x_{00}A_{0} + x_{10}A_{1} + x_{20}A_{2})2^{0} + (x_{01}A_{0} + x_{11}A_{1} + x_{21}A_{2})2 + (x_{02}A_{0} + x_{12}A_{1} + x_{22}A_{2})2 + (x_{03}A_{0} + x_{13}A_{1} + x_{23}A_{2})2 + (x_{03}A_{0} + x_{13}A_{1} + x_{23}A_{2})A_{1} + (x_{03}A_{0} + x_{13}A_{1} + x_{23}A_{2})A_{2} + (x_{03}A_{0} + x_{13}A_{1} + x_{23}A_{2})A_{3} +$$

Course Material from text book "Digital Design of Signal Processing Systems" by Dr. Shoab A. Khan

1

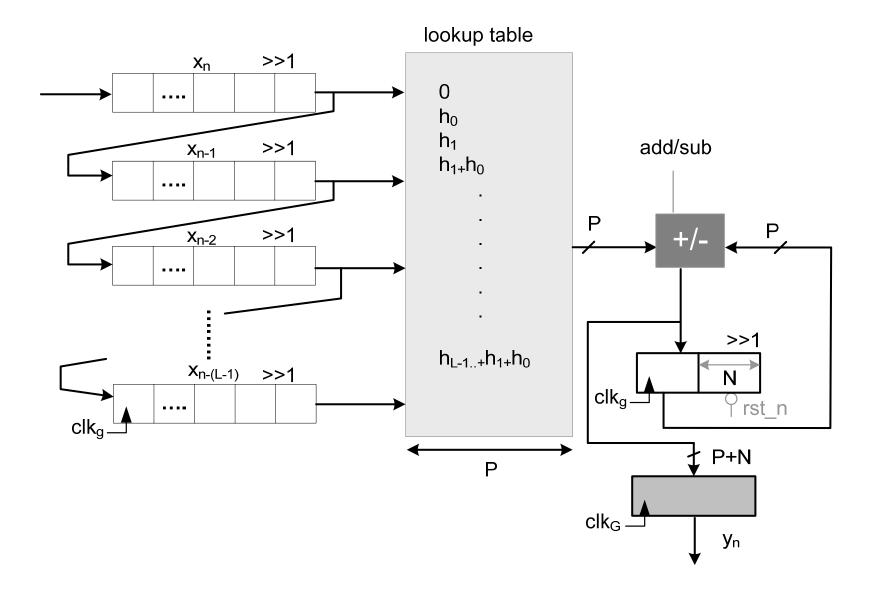

2

3

### **ROM for Distributed Arithmetic**

| X <sub>2b</sub> | X <sub>1b</sub> | x <sub>0b</sub> | Contents of<br>ROM |
|-----------------|-----------------|-----------------|--------------------|
| 0               | 0               | 0               | 0                  |
| 0               | 0               | 1               | A <sub>0</sub>     |
| 0               | 1               | 0               | A <sub>1</sub>     |
| 0               | 1               | 1               | $A_1 + A_0$        |
| 1               | 0               | 0               | A <sub>2</sub>     |
| 1               | 0               | 1               | $A_{2} + A_{0}$    |
| 1               | 1               | 0               | $A_2 + A_1$        |
| 1               | 1               | 1               | $A_2 + A_1 + A_0$  |

### DA for computing the dot product of integer numbers for N=4 and K=3

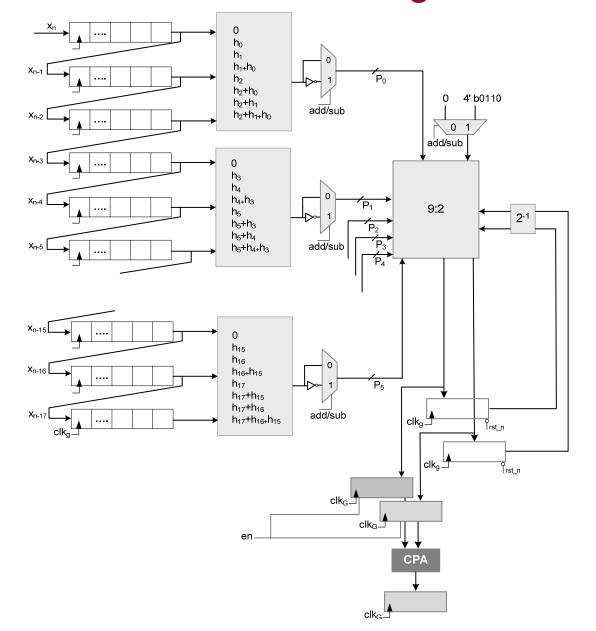



### Look-up table

$$A_0 = 3, A_1 = -1 \text{ and } A_2 = 5$$

| X <sub>2b</sub> | X <sub>1b</sub> | X <sub>0b</sub> | Contents of<br>ROM |    |
|-----------------|-----------------|-----------------|--------------------|----|
| 0               | 0               | 0               | 0                  | 0  |
| 0               | 0               | 1               | A <sub>0</sub>     | 3  |
| 0               | 1               | 0               | A <sub>1</sub>     | -1 |
| 0               | 1               | 1               | $A_1 + A_0$        | 2  |
| 1               | 0               | 0               | A <sub>2</sub>     | 5  |
| 1               | 0               | 1               | $A_2 + A_0$        | 8  |
| 1               | 1               | 0               | $A_2 + A_1$        | 4  |
| 1               | 1               | 1               | $A_2 + A_1 + A_0$  | 7  |

## DA-based architecture for implementing an FIR filter of length L and N-bit data samples




### Cycle by cycle working of DA

| $x_0$ | = -6 = 4'b1010 | ) |
|-------|----------------|---|
| $x_1$ | = 6 = 4'b0110  |   |
| $x_2$ | = -5 = 4'b1012 | 1 |

| Cycle | Address | LUT | Accumulator |
|-------|---------|-----|-------------|
| 0     | 3'b100  | 5   | 000101_000  |
| 1     | 3'b111  | 7   | 001001_100  |
| 2     | 3'b000  | -1  | 000011_110  |
| 3     | 3'b101  | 8   | 111001_111  |

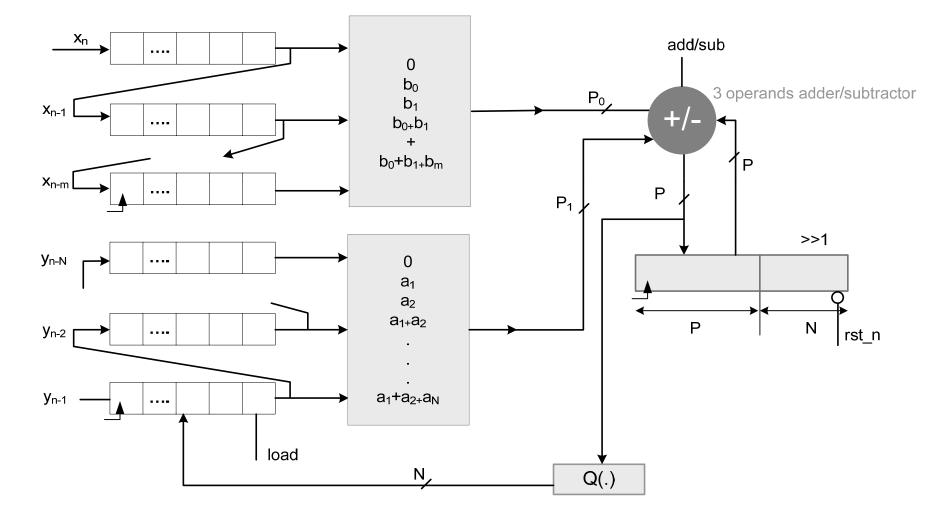

### DA-based parallel implementation of an 18coefficient FIR filter setting L=3 and M=6




56

### A LUT-less implementation of a DA-based FIR filter

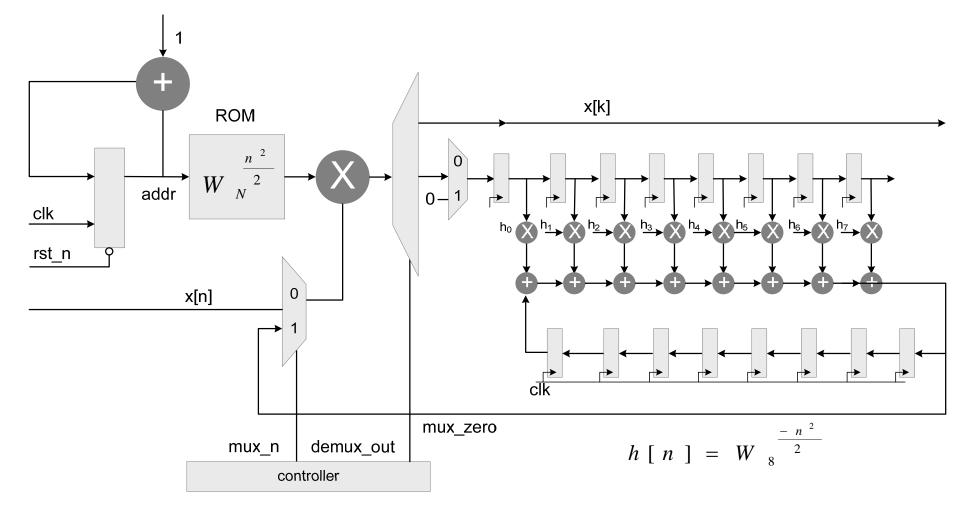
## A parallel implementation for M=K uses a 2:1 MUX, compression tree and a CPA



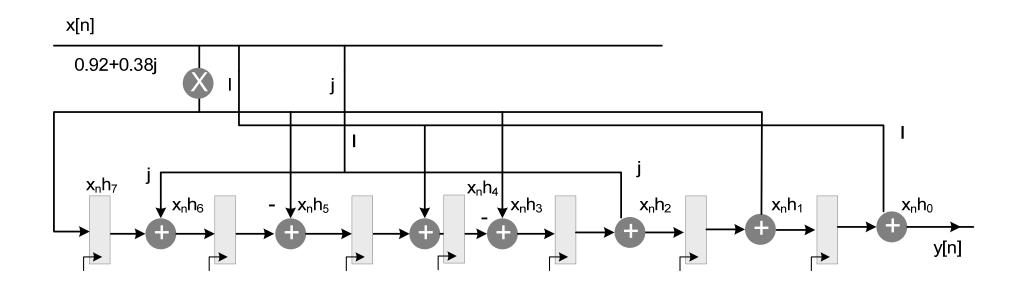

### Reducing the output of the multiplexers using a CPA-based adder tree and one accumulator



### **DA-based IIR filter design**


### **Two ROM-based design**




### **One ROM-based design**



# DFT implementation using circular convolution



# Optimized TDF implementation of the DF implementation in previous figure



### **Questions/Feedback !!**