CORDIC-based DDFS Architecture

Lecture 12

Dr. Shoab A. Khan

Direct Digital Frequency Synthesis (DDFS)

- Direct Digital Frequency Synthesis (DDFS) is used to produce sinusoid signals
 - High frequency resolution
 - Fast changes in frequency and phase
 - High spectral purity

DDFS

 A DDFS is an integral component of high performance communication systems

DDFS

 ADDFS is also critical in speed frequency and phase modulation systems
 GMSK

$$s(t) = \sqrt{\frac{2E_b}{T}} \exp\left[j\pi \sum_{n=0}^k \beta_n \theta(t-nt)\right]$$

Design of DDFS

2^N values of sin and cosine are stored in the ROM

DDFS

- The input to the accumulator is the frequency control word, *W*
- The output freq f_o depends on
 - **u** W
 - f_{clk} clock freq

$$f_0 = \frac{f_{clk}W}{2^N}$$

- The phase accumulator produces a digital ramp out
 acc_reg = acc_reg + W
- The ROM stores corresponding amplitude of sine and consine

DDFS Accumulator: Verilog Code

```
always @(posedge clk or negedge rst_n)
begin
  if(!rst_n) // all registers equal to 0 at reset
  begin
    acc out \leq 0;
    w reg \leq 0;
  end
  else if(load)
    w reg <= w; //load the input control word at load
  else
    acc out <= acc out + w reg;
end
```


- In embedded system, a ROM can't be afforded
- Algorithms are used
 CORDIC

 2^{N} index = 2π 1 index = $2\pi / 2^{N}$

CORDIC as Function Generator

Generates sin and cos digitally at the same time

- Performs Conversion from Cartesian to Polar Co-ordinates
- Acts as a DDFS
- Can also perform function like division and multiplication

Basic Concept

- The cos and sin of an angle are evaluated by giving known recursive rotations
- Depending upon the No. of iterations, sin and cos can be generated very precisely

CorDiC Algorithm

- Basic idea
 - Rotate (1,0) by θ degree
 to get (x,y): x=cos θ y=sin θ

Formulation

 $\cos \theta_{i+1} = \cos(\theta_i + \sigma_i \Delta \theta_i) = \cos \theta_i \cos \Delta \theta_i - \sigma_i \sin \theta_i \sin \Delta \theta_i$

$$\sin \theta_{i+1} = \sin(\theta_i + \sigma_i \Delta \theta_i) = \sin \theta_i \cos \Delta \theta_i - \sigma_i \cos \theta_i \sin \Delta \theta_i$$

For Cosine

For Sine

General Formula: $\sin \theta_{i+1} = \sin(\theta_i + \frac{\delta}{\delta} \frac{\Delta \theta}{\delta})$

For positive value $\sin\theta_i \cos\Delta\theta_i + \cos\theta_i \sin\Delta\theta_i$

For negative value $\sin \frac{\theta}{1} \cos \Delta \theta_{i} - \cos \theta_{i} \sin \Delta \theta_{i}$

$$x_{i+1} = x_i \cos \Delta \theta_i - \sigma_i y_i \sin \Delta \theta_i$$
$$y_{i+1} = \sigma_i x_i \sin \Delta \theta_i + y_i \cos \Delta \theta_i$$

Rotation Matrix representation

$$\sum_{i=1}^{\Delta \theta} \left(\begin{array}{ccc} 1 & -\delta_{i} \tan \Delta \theta_{i} \\ \delta_{i} \tan \Delta \theta_{i} & 1 \end{array} \right) \left(\begin{array}{c} x_{i} \\ y_{i} \end{array} \right)$$

 $\cos\theta = 1/\sqrt{1 + \tan^2 \theta}$ [Trigonometric identity]

Basic Assumption of CORDIC

$$= 1/\sqrt{1+\tan^{2}\Delta\theta_{i}} \left[\begin{array}{ccc} 1 & & -\delta_{i}\tan\Delta\theta_{i} \\ \delta_{i}\tan\Delta\theta_{i} & & 1 \end{array} \right] \left[\begin{array}{c} x_{i} \\ y_{i} \end{array} \right]$$

tan
$$\Delta \theta_i$$
 = 2⁻ⁱ

[Basic assumption of CorDiC algorithm]

 $\Delta \theta$ i= tan⁻¹(2⁻ⁱ)

Where i = 0,1,2,3,4,.... N-1

• So

$$\Delta \theta_0 = \tan^{-1}(2^0)$$

 $\Delta \theta_1 = \tan^{-1}(2^{-1})$
 $\Delta \theta_2 = \tan^{-1}(2^{-2})$
 $\Delta \theta_3 = \tan^{-1}(2^{-3})$

Hence considering $\tan \Delta \theta_i = 2^{-i}$ makes matrix multiplication easier and simpler

Computing

$\Delta \theta_i$ **Pre-computation of tan**($\Delta \theta_i$)

Find $\Delta \theta_i$ Such that tan($\Delta \theta_i = 2^{-i}$: (or $\Delta \theta_i = \tan^{-1}(2^{-i})$)

 45.0° 26.6°

4.0⁰

0.90

 $tan(\Delta \theta_{i})$

123456789 0.4^{0} 0.2^{0} 0.1^{0} $\Delta \theta_{i}$ Note: decreasing

> **Possible to write** <u>any</u> angle = $\theta \pm \Delta \theta_0 \pm \Delta \theta_1 \pm ... \pm \Delta \theta_0$ as long as -99.7° (which covers -90..90)

 $=2^{-0}$ $=2^{-1}$ $=2^{-2}$ $=2^{-3}$ $=2^{-4}$ $=2^{-5}$ $=2^{-6}$ $=2^{-7}$ $=2^{-8}$ $=2^{-9}$

Convergence possible θ

- The rotation by an angle θ is implemented as N microrotations during of step $\Delta \theta_i$ angles
- The angle θ can be represented to a certain accuracy by a set of N step angles $\Delta \theta_i$ for i=0,1,2,...,N-1
- Specifying a direction of rotation, the sum of the step angles approximates the desired angle

 $\sum_{i=0,1,\ldots,N-1} \delta_i \Delta \theta_i$

The Concept

- The sign of the difference between the desired angle and the partial sum of step angles determines the direction of rotation of the next micro angle rotation
 - Set θ_d to θ_0 and then subtracting or adding each micro rotation from the current angle depending on δ_i .

$$\theta_0 = \theta_d$$
$$\theta_{i+1} = \theta_i - \delta_i \Delta \theta_i$$

 To simplify the computation of rotation matrix, the step angles are chosen such that

 $\tan \Delta \theta_{i} = 2^{-i}$

Rotation Matrix for interaction i requiring only shift

Iteration Formulation

$$\begin{pmatrix} \mathbf{x}_{i+1} \\ \\ \\ \mathbf{y}_{i+1} \end{pmatrix} = \begin{pmatrix} \mathbf{K}_i & \mathbf{R}_i \\ \\ \\ \mathbf{y}_i \end{pmatrix}$$

Starting from location 0 going to location 1:

$$\begin{pmatrix} x_1 \\ y_1 \end{pmatrix} = K_0 R_0 \begin{pmatrix} x_0 \\ y_0 \end{pmatrix}$$
This is the point where we are giving $\Delta \theta_0 = \tan^{-1}(2^{-0})$ rotation $x_0 = 1$ and $y_0 = 0$

Tracking the angle traverse

Initializing θ_0 to the desired angle

 $\begin{array}{l} \theta_{0} = \ \theta_{d} \longrightarrow \text{desired angle} \\ \hline \text{In every iteration compute the direction of the next rotation} \\ \theta_{1} = \ \theta_{0} - \ \delta_{0} \ \Delta \theta_{0} \\ 1 = \ +1 \\ -1 \end{array} \begin{array}{l} \delta \\ \theta_{1} > 0 \end{array}$

 $\theta_1 < 0$

Series of Rotation starting from (1,0)

Sign bit of the current angle tells us the direction of the rotation

$$\begin{pmatrix} x_2 \\ y_2 \end{pmatrix} = K_1 R_1 \begin{pmatrix} x_1 \\ y_1 \end{pmatrix} \begin{pmatrix} x_2 \\ y_2 \end{pmatrix} = K_1 K_0 R_1 R_0 \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$
$$\begin{pmatrix} x_3 \\ y_3 \end{pmatrix} = K_2 K_1 K_0 R_2 R_1 R_0 \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

Complete algorithm

$$\begin{pmatrix} x_{N} \\ y_{N} \end{pmatrix} = k_{N-1}K_{N-2}K_{0}R_{N-1}R_{N-2}...R_{0}$$

$$\begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$\begin{pmatrix} x_{N} \\ y_{N} \end{pmatrix} = K_{,}R_{N-1}R_{N-2}...R_{0}$$

$$\begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

 Starting from (K, 0) instead of (1,0) in the first rotation will save multiplication by K of the final result

$$\begin{pmatrix} x_{N} \\ y_{N} \end{pmatrix} = R_{N-1}R_{N-2}...R_{0} \qquad \begin{pmatrix} K \\ 0 \end{pmatrix}$$

Example: Rewriting Angles in Terms of α_i

Iterations

i	$\Delta \theta_i$ in degrees	16 Iterations of CORDIC to compute \cos and \sin of 43 $^{\circ}$
0	43.0000	90
1	16.4349	
2	2.3987	
3	-4.7263	
4	-1.1500	
5	0.6399	
6	-0.2552	
7	0.1924	
8	-0.0314	210 330 - 4°
9	0.0805	
10	0.0245	
11	-0.0035	
12	0.0105	270
13	0.0035	(b)
14	0.0000	
15	-0.0017	
16	-0.0008	

Architecture Mapping

CORDIC Architecture

Example

CORDIC Architecture

Pipelined Design

Verilog Code

Define CorDiC Element as a task, having inputs x_0, y_0 , theta₀, which are kept on being recalled in a for loop.

```
for(i=0; i<=N-1; i=i+1)
CEtask(x[i], y[i], theta[i], i, del_theta[i], x[i+1], y[i+1], theta[i+1])
always @(posedge clk)
for(i=0; i<=N-1; i=i+1) //Replication of hardware
begin
x_reg[i+1] \le x[i];
y_reg[i+1] \le y[i];
theta_reg[i+1] <= theta[i];
end
```

Time Shared Architecture

CORDIC Element for computing x_{i+1} and y_{i+1}

Digital Design of Signal Processing Systems, John Wiley & Sons by Dr. Shoab A. Khan

Modified CORDIC Algorithm

$$\begin{aligned} \theta_{i} &= 0 \ 1 \ 0 \ 0 \ 0 \ 1 \ 0 \ 0 \dots \\ \\ \theta_{i} &= 0 + 2^{-1} + 2^{-6} + \dots \\ \theta_{i} &= \sum_{i=0}^{N-1} \qquad \Delta \theta_{i} 2^{-i} \\ \Delta \theta_{i} &= 0, 1 \end{aligned}$$

$\theta_{i} = 0 \ 1 \ 0 \ 0 \ 0 \ 1 \ 0 \ 0 \dots$

Where 1 gives that value i.e., rotate the weight of the bit, where 0's do not rotate hence we reach the desired angle

Results using CORDIC and modified CORDIC Algorithm

Hardware Mapping of Modified CORDIC Algorithm

The MATLAB code

```
tableX=[];
tableY=[];
N = 16;
K = 1:
for i = 1:N
  K = K * cos(2^{(-(i))});
end
% the constant initial rotation
theta_init = (2)^{0} - (2)^{(-N)};
x0 = K*cos(theta_init);
y0 = K*sin(theta_init);
cosine = [];
sine = [ ];
M = 4:
for index = 0:2^{M-1}
  for k=1:M
     b(M+1-k) = rem(index, 2);
     index = fix(index/2);
  end
```

Contd...

```
% recoding b as r with +1,-1
for k=1:M
    r(k) = 2*b(k) - 1;
end
    % first Modified CORDIC rotation
x(1) = x0 - r(1)*(tan(2^(-1)) * y0);
y(1) = y0 + r(1)*(tan(2^(-1)) * x0);
% rest of the Modified CORDIC rotations
for k=2:M,
```

```
      x(k) = x(k-1) - r(k)^* \tan(2^{(-k)}) * y(k-1); 
      y(k) = y(k-1) + r(k) * \tan(2^{(-k)}) * x(k-1); 
      end 
      tableX = [tableX x(M)]; 
      tableY = [tableY y(M)]; 
      end
```

Hardware Optimization

FDA of Modified CORDIC algorithm

A CE with compression tree

Optimal HW Design for Modified CORDIC Algorithm

Schematic of single-stage CORDIC design

Publications

IEEE JOURNAL OF SOLID-STATE CIRCUITS, VOL. 37, NO. 10, OCTOBER 2002

1235

A 100-MHz 8-mW ROM-Less Quadrature Direct Digital Frequency Synthesizer

Ahmed Nader Mohieldin, Student Member, IEEE, Ahmed A. Emira, Student Member, IEEE, and Edgar Sánchez-Sinencio, Fellow, IEEE

DIRECT DIGITAL FREQUENCY SYNTHESIS USING A MODIFIED CORDIC

Eugene Grayver, Babak Daneshrad Integrated Circuits and Systems Laboratory UCLA, Electrical Engineering Department babak@ee.ucla.edu

Henry Nicholas PhD Work

IEEE JOURNAL OF SOLID-STATE CIRCUITS, VOL. 26, NO. 12, DECEMBER 1991

A 150-MHz Direct Digital Frequency Synthesizer in 1.25-µm CMOS with -90-dBc Spurious Performance

Henry T. Nicholas, III, and Henry Samueli, Member, IEEE

BLOCK DIAGRAM OF HSP50016 DIGITAL DOWN CONVERTER

Questions/Feedback