CORDIC-based DDFS Architecture

Lecture 12

Dr. Shoab A. Khan

Direct Digital Frequency Synthesis (DDFS)

- Direct Digital Frequency Synthesis (DDFS) is used to produce sinusoid signals
- High frequency resolution
- Fast changes in frequency and phase
- High spectral purity

DDFS

- A DDFS is an integral component of high performance communication systems

DDFS

- ADDFS is also critical in speed frequency and phase modulation systems
- GMSK

$$
s(t)=\sqrt{\frac{2 E_{b}}{T} \exp \left[j \pi \sum_{n 0}^{k} \beta_{n} \theta(t-n t)\right]}
$$

Design of DDFS

2^{N} values of sin and cosine are stored in the ROM

DDFS

- The input to the accumulator is the frequency control word, W
- The output freq f_{o} depends on
- W
- $\mathrm{f}_{\mathrm{clk}}$ clock freq

$$
\boldsymbol{f}_{0}=\frac{\boldsymbol{f}_{c l \mathbf{k}} \boldsymbol{W}}{2^{N}}
$$

- The phase accumulator produces a digital ramp out - acc_reg = acc_reg + W
- The ROM stores corresponding amplitude of sine and consine

DDFS Accumulator: Verilog Code

always @(posedge clk or negedge rst_n)
begin
if(!rst_n) // all registers equal to 0 at reset
begin
acc_out <= 0;
w_reg <= 0;
end
else if(load)
w_reg <= w; //load the input control word at load
else
acc_out <= acc_out + w_reg;
end

Generation of Sin and Cos

Generation of Sin and Cos

This waveform can be generated by giving an increment of 2

Generation of Sin and Cos

- In embedded system, a ROM can't be afforded
- Algorithms are used \square CORDIC

Generation of Sin and Cos

2^{N} index $=2 \pi$
 1 index = $2 \pi / 2^{N}$

CORDIC as Function Generator

- Generates sin and cos digitally at the same time
- Performs Conversion from Cartesian to Polar Co-ordinates
- Acts as a DDFS
- Can also perform function like division and multiplication

Basic Concept

- The cos and sin of an angle are evaluated by giving known recursive rotations
- Depending upon the No. of iterations, sin and cos can be generated very precisely

CorDiC Algorithm

- Basic idea
- Rotate $(1,0)$ by θ degree to get $(x, y): x=\cos \theta y=\sin \theta$

Formulation

$$
\theta=\sum_{i}^{N} \sigma_{i} \Delta \theta_{i} \text { for } \sigma_{i}=\left\{\begin{array}{c}
1 \text { for positive rotation } \\
-1 \text { for negative rotation }
\end{array}\right.
$$

$$
\begin{aligned}
\cos \theta_{i+1} & =\cos \left(\theta_{i}+\sigma_{i} \Delta \theta_{i}\right)=\cos \theta_{i} \cos \Delta \theta_{i}-\sigma_{i} \sin \theta_{i} \sin \Delta \theta_{i} \\
\sin \theta_{i+1} & =\sin \left(\theta_{i}+\sigma_{i} \Delta \theta_{i}\right)=\sin \theta_{i} \cos \Delta \theta_{i}-\sigma_{i} \cos \theta_{i} \sin \Delta \theta_{i}
\end{aligned}
$$

Algorithm

$$
\cos \theta_{i+1}=\boldsymbol{\operatorname { c o s }}\left(\theta_{i}+\delta_{i} \Delta \theta_{i}\right)
$$

$\cos \theta_{\mathbf{i}+\mathbf{1}}=\boldsymbol{\operatorname { c o s }} \theta_{\mathrm{i}} \boldsymbol{\operatorname { c o s }} \Delta \theta_{\delta} \quad \delta_{i} \sin \theta_{i} \sin \Delta \theta_{i}$

$$
\begin{aligned}
& \cos \theta_{i+1}=x_{i+1} \\
& \cos \theta_{i}=x_{i} \\
& \sin \theta_{i}=y_{i}
\end{aligned}
$$

For Cosine

$$
\begin{aligned}
& \text { General Formula } \\
& x_{i+1}=x_{i} \cos \Delta \theta_{i}-\delta_{i} y_{i} \operatorname{sir} \Delta \theta{ }_{i} \longrightarrow E q 1 \\
& \text { For positive value } \\
& =\mathbf{x}_{\mathbf{i}} \boldsymbol{\operatorname { c o s }}{ }^{\Delta \theta}{ }_{i}-\mathbf{y}_{\mathbf{i}} \mathbf{s i n}^{\Delta \theta}{ }_{i} \\
& \text { For negative value } \\
& \Delta \theta \quad \Delta \theta \\
& =\mathrm{x}_{\mathrm{i}} \cos \mathrm{i}_{\mathrm{i}} \mathrm{H}_{\mathrm{i}} \mathbf{s i n} \mathrm{i}
\end{aligned}
$$

For Sine

General Formula:
$\sin \theta_{i+1}=\sin \left(\theta_{i}+{ }_{i} \Delta \theta_{i}\right)$

For positive value $\sin \theta_{i} \cos \Delta \theta_{i}+\cos \theta_{i} \sin \Delta \theta_{i}$

For negative value
$\sin { }_{i} \cos \Delta \theta_{i}-\cos \theta_{i} \sin \Delta \theta_{i}$

$$
\begin{gathered}
x_{i+1}=x_{i} \cos \Delta \theta_{i}-\sigma_{i} y_{i} \sin \Delta \theta_{i} \\
y_{i+1}=\sigma_{i} x_{i} \sin \Delta \theta_{i}+y_{i} \cos \Delta \theta_{i} \\
\binom{\mathrm{x}_{\mathrm{i}+1}}{\mathrm{y}_{\mathrm{i}+1}}=\left(\begin{array}{cc}
\cos \Delta \theta_{\mathrm{i}} & -\delta_{\mathrm{i}} \sin \Delta \theta_{\mathrm{i}} \\
\delta_{\mathrm{i}} \sin \Delta \theta_{\mathrm{i}} & \cos \Delta \theta_{\mathrm{i}} \\
\text { Rotation Matrix representation }
\end{array}\right)\binom{\mathrm{x}_{\mathrm{i}}}{\mathrm{y}_{\mathrm{i}}}
\end{gathered}
$$

Taking $\cos \Delta \theta_{\text {i }}$ common in the Rotation Matrix

$=\cos _{i}^{\Delta \theta}\left(\begin{array}{lc}1 & -\delta_{i} \tan \Delta \theta_{i} \\ \delta_{i} \tan \Delta \theta_{i} & 1\end{array}\right)\binom{x_{i}}{y_{i}}$
$\cos \theta=1 / \sqrt{1+\tan ^{2} \theta} \quad$ [Trigonometric identity]

Basic Assumption of CORDIC

$$
=1 / \sqrt{1+\tan ^{2} \Delta \theta_{\mathrm{i}}}\left(\begin{array}{lc}
1 & -\delta_{i} \tan \Delta \theta_{i} \\
\delta_{i} \tan \Delta \theta_{i} & 1
\end{array}\right)\binom{x_{i}}{y_{i}}
$$

$\tan \Delta \theta_{i}=2^{-i} \quad$ [Basic assumption of CorDiC algorithm]

$$
\Delta \theta \mathrm{i}=\tan ^{-1}\left(2^{-\mathrm{i}}\right)
$$

$$
\text { Where } i=0,1,2,3,4, \ldots . \mathrm{N}-1
$$

- So

$$
\Delta \theta_{0}=\tan ^{-1}\left(2^{0}\right)
$$

$\Delta \theta_{1}=\tan ^{-1}\left(2^{-1}\right)$
$\Delta \theta_{2}=\tan ^{-1}\left(2^{-2}\right)$
$\Delta \theta_{3}=\tan ^{-1}\left(2^{-3}\right)$
Hence considering $\tan \Delta \theta_{\mathrm{i}}=2^{-\mathrm{i}}$ makes matrix multiplication easier and simpler

Computing

$\Delta \theta_{\mathrm{i}} \quad \operatorname{Pre}-c o m p u t a t i o n ~ o f ~ \tan \left(\Delta \theta_{\mathrm{i}}\right)$

- Find $\Delta \theta_{i}$ Such that $\tan \left(\Delta \theta_{i}=2^{-i}\right.$: $\left(\right.$ or $\left.\Delta \theta_{i}=\tan ^{-1}\left(2^{-i}\right)\right)$ $i \quad \tan \left(\Delta \theta_{i}\right)$

0	45.0^{0}	1	$=2^{-0}$
1	26.6^{0}	0.5	$=2^{-1}$
2	14.0^{0}	0.25	$=2^{-2}$
3	7.0^{0}	0.125	$=2^{-3}$
4	3.6^{0}	0.0625	$=2^{-4}$
5	1.8^{0}	0.03125	$=2^{-5}$
6	0.9^{0}	0.015625	$=2^{-6}$
7	0.4^{0}	0.0078125	$=2^{-7}$
8	0.2^{0}	0.00390625	$=2^{-8}$
9	0.1^{0}	0.001953125	$=2^{-9}$
reasing	$\Delta \theta_{i}$		

- Possible to write any angle $=\theta \quad \pm \Delta \theta_{0} \pm \Delta \theta_{1} \pm \ldots \pm \Delta \theta_{\text {, }}$ as long as $-99.7^{0} \leq$ (which covers -90..90)
- Convergence possible θ

Concept

- The rotation by an angle θ is implemented as N microrotations during of step $\Delta \theta_{i}$ angles
- The angle θ can be represented to a certain accuracy by a set of N step angles $\Delta \theta_{i}$ for $i=0,1,2, \ldots, N-1$
- Specifying a direction of rotation, the sum of the step angles approximates the desired angle

$$
\sum_{i=0,1, \ldots, N-1} \delta_{i} \Delta \theta_{i}
$$

The Concept

- The sign of the difference between the desired angle and the partial sum of step angles determines the direction of rotation of the next micro angle rotation
- $\operatorname{Set} \theta_{d}$ to θ_{0}, and then subtracting or adding each micro rotation from the current angle depending on δ_{i}.

$$
\begin{gathered}
\theta_{0}=\theta_{d} \\
\theta_{i+1}=\theta_{i}-\delta_{i} \Delta \theta_{i}
\end{gathered}
$$

- To simplify the computation of rotation matrix, the step angles are chosen such that

$$
\tan \Delta \theta_{i=} 2^{-i}
$$

Three Equations for Rotation and Angle Computation

$$
\begin{aligned}
& \delta \\
& \begin{array}{l}
x_{i+1}={ }^{n} x_{i}-\delta_{i} 2^{-i} y_{i} \\
y_{i+1}={ }^{\theta}{ }^{2} 2^{-i} x_{i}+\delta_{i}
\end{array} \\
& \left.{ }_{i+1}=\delta_{i} \equiv \begin{array}{c}
1 \\
i \\
-1
\end{array}\right\} \begin{array}{l}
\theta_{i} \geqslant 0 \\
\theta_{i}<0
\end{array}
\end{aligned}
$$

Rotation Matrix for interaction i requiring only shift

Iteration Formulation

$$
\binom{x_{i+1}}{y_{i+1}}=K_{i} R_{i}\binom{x_{i}}{y_{i}}
$$

Starting from location 0 going to location 1:

$$
\binom{x_{1}}{y_{1}}=K_{0} R_{0}\binom{x_{0}}{y_{0}} \begin{aligned}
& \begin{array}{l}
\text { This is the point where we are } \\
\text { giving } \Delta \theta_{0}=\tan ^{-1}\left(2^{-0}\right) \text { rotation } \\
x_{0}=1 \text { and } y_{0}=0
\end{array} \\
& \hline
\end{aligned}
$$

Tracking the angle traverse

Initializing θ_{0} to the desired angle

$$
\theta_{0}=\theta_{d} \longrightarrow \text { desired angle }
$$

In every iteration compute the direction of the next rotation

$$
\begin{array}{r}
\theta_{1}=\theta_{0}-\delta_{0} \Delta \theta_{0} \\
\left.1=\begin{array}{c}
+1 \\
-1
\end{array}\right\} \theta_{1}>0 \\
\theta_{1}<0
\end{array}
$$

Series of Rotation starting from $(1,0)$

- Sign bit of the current angle tells us the direction of the rotation

$$
\begin{aligned}
&\binom{x_{2}}{y_{2}}=K_{1} R_{1}\binom{x_{1}}{y_{1}} \\
&\binom{x_{2}}{y_{2}}=K_{1} K_{0} R_{1} R_{0}\binom{1}{0} \\
&\binom{x_{3}}{y_{3}}=
\end{aligned}
$$

Complete algorithm

$$
\left.\begin{array}{l}
{\left[\begin{array}{l}
x_{N} \\
y_{N}
\end{array}\right]=\mathrm{k}_{\mathrm{N}-1} \mathrm{~K}_{\mathrm{N}-2} \mathrm{~K}_{0} \mathrm{R}_{\mathrm{N}-1} \mathrm{R}_{\mathrm{N}-2} \ldots \mathrm{R}_{0}}
\end{array}\right]\left[\begin{array}{l}
1 \\
0
\end{array}\right]
$$

- Starting from $(K, 0)$ instead of $(1,0)$ in the first rotation will save multiplication by K of the final result

$$
\left[\begin{array}{l}
x_{N} \\
y_{N}
\end{array}\right]=R_{N-1} R_{N-2} \ldots R_{0} \quad\left[\begin{array}{l}
K \\
0
\end{array}\right]
$$

- Algorithm: (θ is the current angle) $\theta_{\mathrm{d}} \quad \theta_{\mathrm{i}+1}$
- Mode: rotation: "each step, try to møke zero"
- Initialize $x=0.607253, y=0$,
- For $\mathrm{i}=0$
- $\quad \delta_{i}=1$ when $^{\theta}>0$, else - 1
- $\quad x_{i+1}=x_{i}-\delta_{i} \cdot 2^{-i} \cdot y_{i}$
- $\quad y_{i+1}=y_{i}+\delta_{i} \cdot 2^{-i} \cdot x_{i}$
- $\quad \theta_{i+1}=\theta_{i}-\delta_{i} \Delta \theta_{i}$
- Result: $x_{N}=\cos _{\theta}, y_{N}=\sin \quad \theta$

- Precision: n bits

Example: Rewriting Angles in Terms of α_{i}

$$
\begin{aligned}
& \theta_{\text {d }}
\end{aligned}
$$

Iterations

i	$\Delta \theta_{i}$ in degrees	16 Iterations of CORDIC to compute cos and sin of 43°
0	43.0000	
1	16.4349	
2	2.3987	
3	-4.7263	
4	-1.1500	
5	0.6399	
6	-0.2552	
7	0.1924	
8	-0.0314	
9	0.0805	
10	-0.0035	
11	0.0105	
12	0.0035	
13	0.0000	
15	-0.0017	

Architecture Mapping

CORDIC Architecture

Example

Digital Design of Signal Processing Systems, John Wiley \& Sons by Dr. Shoab A. Khan

CORDIC Architecture

Pipelined Design

Verilog Code

Define CorDiC Element as a task, having inputs $\mathrm{x}_{0}, \mathrm{y}_{0}$, theta a_{0}, which are kept on being recalled in a for loop.

```
for(i=0; i<=N-1; i=i+1)
CEtask(x[i], y[i], theta[i], i, del_theta[i], x[i+1], y[i+1], theta[i+1])
always @(posedge clk)
for(i=0; i<=N-1; i=i+1) //Replication of hardware
begin
    x_reg[i+1] <= x[i];
    y_reg[i+1] <= y[i];
    theta_reg[i+1] <= theta[i];
end
```


Time Shared Architecture

Digital Design of Signal Processing Systems, John Wiley \& Sons by Dr. Shoab A. Khan

CORDIC Element for computing $\mathrm{x}_{\mathrm{i}+1}$ and $\mathrm{y}_{\mathrm{i}+1}$

Modified CORDIC Algorithm

$$
\begin{aligned}
& \theta_{\mathrm{i}}=010000100 \ldots \\
& \theta_{\mathrm{i}}=0+2^{-1}+2^{-6}+\ldots \\
& \theta_{\mathrm{i}}=\sum_{\mathrm{i}=0}^{\mathrm{N-1}} \Delta \theta_{\mathrm{i}} 2^{-\mathrm{i}} \\
& \Delta \theta_{\mathrm{i}}=0,1
\end{aligned}
$$

$\theta_{\mathrm{i}}=010000100 \ldots$

Where 1 gives that value i.e., rotate the weight of the bit, where 0's do not rotate hence we reach the desired angle

Results using CORDIC and modified CORDIC

Algorithm

Hardware Mapping of Modified CORDIC

Algorithm

The MATLAB code

```
tableX=[ ];
tableY=[ ];
N = 16;
K=1;
for i=1:N
    K = K * }\operatorname{cos(2^(-(i)));
end
% the constant initial rotation
theta_init = (2)^0-(2)^(-N);
x0 = K*}\operatorname{cos(theta_init);
y0 = K*sin(theta_init);
cosine = [ ];
sine = [ ];
M = 4;
for index = 0:2^M-1
    for k=1:M
        b(M+1-k) = rem(index, 2);
        index = fix(index/2);
    end
```


Contd...

```
    % recoding b as r with +1,-1
    for k=1:M
        r(k) = 2*b(k) - 1;
    end
    % first Modified CORDIC rotation
    x(1) = x0 - r(1)*(tan(2^(-1)) * y0);
    y(1) = y0 +r(1)*(tan(2^(-1)) * x0);
    % rest of the Modified CORDIC rotations
    for k=2:M,
        x(k) = x(k-1) - r(k)* tan(2^(-k)) * y(k-1);
        y(k)=y(k-1)+r(k) * tan(2^(-k)) * x(k-1);
    end
    tableX = [tableX x(M)];
    tableY = [tableY y(M)];
end
```


Hardware Optimization

FDA of Modified CORDIC algorithm

A CE with compression tree

Optimal HW Design for Modified CORDIC Algorithm

Schematic of single-stage CORDIC design

Publications

A $100-\mathrm{MHz} 8-\mathrm{mW}$ ROM-Less Quadrature Direct Digital Frequency Synthesizer

Ahmed Nader Mohieldin, Student Member, IEEE, Ahmed A. Emira, Student Member, IEEE, and Edgar Sánchez-Sinencio, Fellow, IEEE

DIRECT DIGITAL FREQUENCY SYNTHESIS USING A MODIFIED CORDIC

Eugene Grayver, Babak Daneshrad
Integrated Circuits and Systems Laboratory UCLA, Electrical Engineering Department
babak@ee.ucla.edu

Henry Nicholas PhD Work

A $150-\mathrm{MHz}$ Direct Digital Frequency Synthesizer in $1.25-\mu \mathrm{m}$ CMOS with $-90-\mathrm{dBc}$ Spurious Performance

Henry T. Nicholas, III, and Henry Samueli, Member, IEEE

BLOCK DIAGRAM OF HSP50016 DIGITAL DOWN CONVERTER

Questions/Feedback

