
Using Hardware Description

Language

Verilog HDL & System Verilog

Lecture 2

Dr. Shoab A. Khan

1

Digital Design of Signal Processing Systems, John Wiley & Sons by Dr. Shoab A. Khan

Verilog HDL

“Though Verilog is C like in syntax but has distinct

character and interpretation. A programmer must

set his perception right before coding in Verilog.

He must visualize hardware in his mind while

structuring Verilog modules consisting of

procedural blocks and assignments.”

2

Digital Design of Signal Processing Systems, John Wiley & Sons by Dr. Shoab A. Khan

System level design components

Floating Point

Behavioral

Description

Design

Specification

Fixed Point

Implementation

S/W

SW
S/W - H/W

Partition

System

Integration and

testing

Algorithm development

Fixed Point

Conversion

HW

Gate Level Net

List

Timing &

Functional

Verification

Synthesis

Functional

Verification

Layout

Hardware development

and testing

S
o

ftw
a

re
 d

e
v

e
lo

p
m

e
n

t a
n

d
 te

s
tin

g

S
y

s
te

m
 le

v
e

l d
e

s
ig

n
, v

e
rific

a
tio

n
 a

n
d

 te
s

tin
g

RTL Verilog

Implementation

S/W - H/W

Co-verification

3

Digital Design of Signal Processing Systems, John Wiley & Sons by Dr. Shoab A. Khan

Digital Design at Algorithmic Level

 Algorithms are developed using tools like

Matlab

 The algorithmic implementation only checks

the functionality of the design without any HW

considerations

 At algorithmic level an application can also be

coded in Verilog using high level language

constructs

 SystemVerilog can also be used at algorithmic

level for simulation and verification the design

4

Digital Design of Signal Processing Systems, John Wiley & Sons by Dr. Shoab A. Khan

Digital Design at Transaction

 At TLM the inter component communication is

implemented as transactions and RTL details

are ignored

Transactor

C++ test vector

generator

Checker Transactor

C++ Implementation

Coverage

TLM

Transactor

C++ test vector

generator

Checker Transactor

C++ Implementation

Coverage

DUT

Driver Monitor

RTL

TRANSLATOR

TLM

5

Digital Design of Signal Processing Systems, John Wiley & Sons by Dr. Shoab A. Khan

Digital Design at RTL

6

Digital Design of Signal Processing Systems, John Wiley & Sons by Dr. Shoab A. Khan

RTL Design and HDLs

 At RTL level the designer must know all the

registers in the design

 The computations performed are modeled by a

combinational cloud

 Gate level details are not important

 HDLs Verilog/VHDL are used to implement a

design at RTL level

 Verilog resembles with C and is usually preferred

in industry

7

Digital Design of Signal Processing Systems, John Wiley & Sons by Dr. Shoab A. Khan

RTL Design and HDLs

8

Digital Design of Signal Processing Systems, John Wiley & Sons by Dr. Shoab A. Khan

Modeling, Simulation and Synthesis

 Verilog is used for modeling design at RTL and writing

stimulus for testing and simulation on simulation tools

like Modelsim®

 Simulation tools typically accept full set of Verilog

language constructs

 The RTL design without stimulus is synthesized on target

technologies

 Some language constructs and their use in a Verilog

description make simulation efficient and they are

ignored by synthesis tools

 Synthesis tools typically accept only a subset of the full

Verilog language constructs

 These constructs are called RTL Verilog

9

Digital Design of Signal Processing Systems, John Wiley & Sons by Dr. Shoab A. Khan

Verilog Standards

- 1995: IEEE Standard 1364-1995 (Verilog 95)

- 2002: IEEE Standard 1364-2001 (Verilog 2001)

- 2003: IEEE Standard 1364-2001 revision C

- 2005: IEEE Standard 1364-2005 (Verilog 2005)

“1364-2005 IEEE Standard for Verilog Hardware Description
Language”

- 2005: IEEE Standard 1800-2005 (SystemVerilog)

“1800-2005 IEEE Standard for System Verilog: Unified Hardware Design,
Specification and Verification Language”

10

Digital Design of Signal Processing Systems, John Wiley & Sons by Dr. Shoab A. Khan

The Basic Building Block: Module

 The Module Concept

 The module is the basic building block in

Verilog

 Modules are:

• Declared

• Instantiated

 Modules declarations cannot be nested

11

Digital Design of Signal Processing Systems, John Wiley & Sons by Dr. Shoab A. Khan

Modeling Structure: Modules

 Modules can be interconnected to describe the structure of

your digital system

 Modules start with keyword module and end with keyword

endmodule

 Modules have ports for interconnection with other modules

 Two styles of module templates

module FA <port declaration>;

.

.

.

endmodule

module FA <portlist>;

port delaration;

.

.

endmodule

Verilog-95 Verilog-2001
12

Digital Design of Signal Processing Systems, John Wiley & Sons by Dr. Shoab A. Khan

Module Template and Module Definition

module FA (<port declaration>);
.
.
.
.
.
.
.
.
.
.
.

.
endmodule

module FA(

input a,

input b,

input c_in,

output sum,

output c_out);

assign {c_out, sum} = a+b+c_in;

endmodule

(a) (b)

13

Digital Design of Signal Processing Systems, John Wiley & Sons by Dr. Shoab A. Khan

Hierarchical Design

 Verilog code contains a top-level module and zero or

more instantiated modules

 The top-level module is not instantiated anywhere

 Several copies of a lower-level module may exist

 Each copy stores its own values of regs/wires

 Ports are used for interconnections to instantiated

modules

 Order of ports in module definition determine order for

connections of instantiated module
14

Digital Design of Signal Processing Systems, John Wiley & Sons by Dr. Shoab A. Khan

Verilog FA module with input and output ports

module FA(a, b, c_in, sum, c_out);

input a, b, c;

ouput sum, c_out;

assign {c_out, sum} = a+b+c_in;

endmodule

module FA(

input a, b, c_in,

output sum, c_out);

assign {c_out, sum} = a+b+c_in;

endmodule

(a) (b)

(a)Port declaration in module

definition and port listing follows

the definition

15

(b) Verilog-2001 support of ANSI

style port listing in module definition

Digital Design of Signal Processing Systems, John Wiley & Sons by Dr. Shoab A. Khan

A design of 3-bit RCA using instantiation of three FAs

a[0]
1 1

b[0] a[1]
1 1

b[1] a[2]
1 1

b[2]

a

b 3

1

carry[0] carry[1]

sum[0] sum[1] sum[2]

sum 3

cout
1cin

3

fa0

FA

fa1

FA

fa2

FA

16

Digital Design of Signal Processing Systems, John Wiley & Sons by Dr. Shoab A. Khan

Verilog module for a 3-bit RCA

module RCA(

input [2:0] a, b,

input c_in,

output [2:0] sum,

output c_out);

wire carry[1:0];

// module instantiation

FA fa0(a[0], b[0], c_in,

sum[0], carry[0]);

FA fa1(a[1], b[1], carry[0],

sum[1], carry[1]);

FA fa2(a[2], b[2], carry[1],

sum[2], c_out);

endmodule

module RCA(

input [2:0] a, b,

input c_in,

output [2:0] sum,

output c_out);

wire carry[1:0];

// module instantiation

FA fa0(.a(a[0]),.b(b[0]), .c_in(c_in),

.sum(sum[0]),.c_out(carry[0]));

FA fa1(.a(a[1]), .b(b[1]),

.c_in(carry[0]), .sum(sum[1]),

.c_out(carry[1]));

FA fa2(.a(a[2]), .b(b[2]), .c_in(carry[1]),

.sum(sum[2]), .c_out(c_out));

endmodule
(a) (b)

(a) Port connections following the order of ports definition

in the FA module
17

(b) Port connections using names

Design Partitioning and Synthesis Guidelines

18

Digital Design of Signal Processing Systems, John Wiley & Sons by Dr. Shoab A. Khan

Design Partitioning

 At system level a design should be broken

into a number of modules

 A mix of top down and bottom up

methodology is practiced

 Some lower level modules are hierarchically

instantiated to make bigger modules

 Top level modules are broken into smaller

lower level modules

19

Digital Design of Signal Processing Systems, John Wiley & Sons by Dr. Shoab A. Khan

Design Partitioning

Encryption &

Round Key

Local mem

 Port A/B

8

Write words to

 mem AES

1

Port A

P
o

rt
 B

FIFO AES

8

aes_done

Port A

P
o

rt
 B

FEC Local

mem

8

Port A

P
o

rt
 B Framer

FIFO

8

Write encoded data

to memory
Write

mod_bit_stream

P
o

rt
 B

P
o

rt
 A

FEC FIFO

8

Read

frm_bit_stream

frm_bit_valid Framer

F
ra

m
e

r
IFTx_out

DAC_clk

D/A Interface

serial clk

serial-data

12-bit data stream

fe
c
_
d

o
n

e

circuit clk

FEC Encoding

F
E

C
-I

F

N
R

Z
-I

F

ASP AES

Mx output bit clock

X
GMSK

Modulator

S
e

le
c
ti
o

n

lo
g

ic

jωо
n

e

Read

20

Digital Design of Signal Processing Systems, John Wiley & Sons by Dr. Shoab A. Khan

Synthesis Guideline

Module 1 Module 2

Module 3

Cloud 2

Cloud 3

Cloud 1

Design partitioning in number of modules with modules

boundaries on register outputs

21

Digital Design of Signal Processing Systems, John Wiley & Sons by Dr. Shoab A. Khan

Synthesis Guideline: Glue logic at top level should be avoided

Module 1 Module 2

Top Level Module

clk

rst-n

glue

logic

22

Digital Design of Signal Processing Systems, John Wiley & Sons by Dr. Shoab A. Khan

Synthesis guideline

Timing Area

Module 1

Critical

Logic
Non-Critical

Logic

A bad design where time critical and non critical logic

are placed in the same module

23

Digital Design of Signal Processing Systems, John Wiley & Sons by Dr. Shoab A. Khan

Synthesis guideline

Timing Area

Module 1 Module 2

Critical

Logic
Non-Critical

Logic

A good design places critical logic and non critical

logic in separate modules

24

Digital Design of Signal Processing Systems, John Wiley & Sons by Shoab A. Khan

Verilog syntax

25

Digital Design of Signal Processing Systems, John Wiley & Sons by Dr. Shoab A. Khan

Possible values a bit may take in Verilog

0 zero, logic low, false, or ground

1 one, logic high, or power

x unknown

z high impedance, unconnected, or tri-state port

A number in Verilog may contain all four possible values:

Example: 20‟b 0011_1010_101x_x0z0_011z

26

Digital Design of Signal Processing Systems, John Wiley & Sons by Dr. Shoab A. Khan

Data Types

 Nets
 Nets are physical connections between

components

 Nets always show the logic value of the driving
components

 Many types of nets, we use wire in RTL

 Registers
 Implicit storage – unless variable of this type is

modified it retains previously assigned value

 Does not necessarily imply a hardware register

 Register type is denoted by reg

27

Digital Design of Signal Processing Systems, John Wiley & Sons by Dr. Shoab A. Khan

Variable Declaration

 Declaring a net, signed or unsigned

 wire [<signed>] [<range>] <net_name> [<net_name>*];

 Range is specified as [MSB:LSB]. Default is one bit wide

 Declaring a register

 reg [<signed>] [<range>] <reg_name> [<reg_name>*];

 Declaring memory

 reg [<range>] <memory_name> [<start_addr> :
<end_addr>];

 Examples

 reg r; // 1-bit reg variable

 wire x1, x2; // 2 1-bit wire variable

 reg signed [7:0] y_reg; // 8-bit sign register

 reg [7:0] ram_mem [0:1023]; //a 1 KB memory

28

Digital Design of Signal Processing Systems, John Wiley & Sons by Dr. Shoab A. Khan

Constants

 Constants can be written in

 decimal (default)

• 13, „d13

 binary

• 4‟b1101

 octal

• 4‟o15

 hexadecimal

• 4‟hd

29

Digital Design of Signal Processing Systems, John Wiley & Sons by Dr. Shoab A. Khan

Four Levels of Abstraction

 The HW can be described at several levels of details

 To capture these details Verilog provides four levels of

abstraction

1. Switch level

2. Gate level

3. Dataflow level

4. Behavioral or algorithmic level

30

Digital Design of Signal Processing Systems, John Wiley & Sons by Dr. Shoab A. Khan

Levels of Abstractions

 Switch Level: The lowest level of abstraction is the

switch or transistor Level Modeling

 Gate Level: Synthesis tools compile high level code

and generate code at gate level

 Dataflow Level: The level of abstraction higher than

the gate level

 Behavioral Level: In more complex digital designs,

priority is given to the performance and behavior at

algorithmic level
31

Digital Design of Signal Processing Systems, John Wiley & Sons by Dr. Shoab A. Khan

Gate level or structural modeling

 Are build from gate primitives

 Verilog has built-in gate-level primitives
NAND, NOR, AND, OR, XOR, BUF, NOT,
and some others

 Describe the circuit using logic gates-much
as you have see in an implementation of a
circuit in basic logic design course

 The delay can also be modeled

 Typical gate instantiation is

and #delay instance-name (out, in1, in2, in3,
…)

32

Digital Design of Signal Processing Systems, John Wiley & Sons by Dr. Shoab A. Khan

Example: Gate-level implementation of 2:1 MUX

using Verilog Primitives

module mux (out, in1, in2, sel);

output out;

input in1, in2, sel;

wire out1, out2, sel_n;

and #5 a1(out1, in1, sel_n);

and #5 a2(out2, in2, sel);

or #5 o1(out, out1, out2);

not n1(sel_n, sel);

endmodule

(a) (b)

out
sel

in1

in2

out1

out2

33

Digital Design of Signal Processing Systems, John Wiley & Sons by Dr. Shoab A. Khan

Dataflow Modeling

 Expressions, operands and operators form

the basis of dataflow modeling.

34

Digital Design of Signal Processing Systems, John Wiley & Sons by Dr. Shoab A. Khan

A list of operators for dataflow modeling

35

Digital Design of Signal Processing Systems, John Wiley & Sons by Dr. Shoab A. Khan

Arithmetic Operators

Operator Type Operator Symbol Operation Performed

Arithmetic * Multiply

/ Divide

+ Add

- Subtract

%
Modulus

**
Power

36

Digital Design of Signal Processing Systems, John Wiley & Sons by Dr. Shoab A. Khan

Conditional Operator

Operator Type Operator Symbol Operation Performed

Conditional ?: Conditional

37

Digital Design of Signal Processing Systems, John Wiley & Sons by Dr. Shoab A. Khan

Conditional Operator

out = sel ? a : b;

if(sel)
out = a;

else
out = b;

This statement is equivalent to following decision logic.

Conditional operator can also be used to infer higher order multiplexers. The code
here infers 4:1 multiplexer.

out = sel[1] ? (sel[0] ? in3 : in2) : (sel[0] ? in1 : in0);

38

Digital Design of Signal Processing Systems, John Wiley & Sons by Dr. Shoab A. Khan

Concatenation and Replication Operators

Operator Type Operator Symbol Operation Performed

Concatenation {} Concatenation

Replication {{}} Replication

39

Digital Design of Signal Processing Systems, John Wiley & Sons by Dr. Shoab A. Khan

MSB LSB

p 13 bits

p={a[3:0], b[2:0], 3'b111, c[2:0]};

Example of Concatenation Operator

40

Digital Design of Signal Processing Systems, John Wiley & Sons by Dr. Shoab A. Khan

Example: Replication Operator

A = 2’b01;

B = {4{A}} // the replication operator

The operator replicates A four times and assigns the replicated
value to B.

Thus B = 8′ b 01010101

41

Digital Design of Signal Processing Systems, John Wiley & Sons by Dr. Shoab A. Khan

Relational Operator

> Greater than

< Less than

>= Greater than or equal

<= Less than or equal

42

Relational Operator Operator Symbol Operation performed

Digital Design of Signal Processing Systems, John Wiley & Sons by Dr. Shoab A. Khan

Reduction Operators

Operator Type Operator Symbol Operation performed

Reduction &

~&

|

~|

^

^~ or ~^

Reduction and

Reduction nand

Reduction or

Reduction nor

Reduction xor

Reduction xnor

43

Digital Design of Signal Processing Systems, John Wiley & Sons by Dr. Shoab A. Khan

Bitwise Arithmetic Operators

Bitwise ~ Bitwise negation

& Bitwise AND

~& Bitwise NAND

| Bitwise OR

~| Bitwise NOR

^ Bitwise XOR

^~ or ~^ Bitwise XNOR

44

Operator Type Operator Symbol Operation performed

Digital Design of Signal Processing Systems, John Wiley & Sons by Dr. Shoab A. Khan

Equality Operators

Operator Type Operator Symbol Operation performed

Equality ==

!=

===

!==

Equality

Inequality

Case Equality

Case Inequality

45

Digital Design of Signal Processing Systems, John Wiley & Sons by Dr. Shoab A. Khan

Logical Operators

Operator Type Operator Symbol Operation Performed

Logical ! Logical Negation

|| Logical Or

&& Logical AND

46

Digital Design of Signal Processing Systems, John Wiley & Sons by Dr. Shoab A. Khan

Shift Operators

Operator Type Operator Symbol Operation Performed

Logic Shift >> Unsigned Right Shift

<< Unsigned Left Shift

Arithmetic Shift >>> Signed Right Shift

<<< Signed Left Shift

47

Digital Design of Signal Processing Systems, John Wiley & Sons by Dr. Shoab A. Khan

Example: Shift Operator

 Shift an unsigned reg A = 6′b101111 by 2

 B = A >> 2;

 drops 2 LSBs and appends two zeros at

MSBs position, thus

 B = 6′b001011

48

Digital Design of Signal Processing Systems, John Wiley & Sons by Dr. Shoab A. Khan

Example: Arithmetic Shift

 Arithmetic shift right a wire A= 6′b101111 by 2

 B = A >>> 2;

 This operation will drop 2 LSBs and appends the

sign bit to 2 MSBs locations. Thus B is

6΄b111011.

49

Digital Design of Signal Processing Systems, John Wiley & Sons by Dr. Shoab A. Khan

Example: Reduction Operator

Apply & reduction operator on a 4-bit number
A=4′b1011

assign out = &A;

This operation is equivalent to performing a bit-
wise & operation on all the bits of A i.e.

out = A[0] & A[1] & A[2] & A[3];

50

Digital Design of Signal Processing Systems, John Wiley & Sons by Dr. Shoab A. Khan

Data Flow Modeling: Continuous Assignment

 Continually drive wire variables

 Model combinational logic

module adder_4 (a, b, ci, s, co);

input [3:0] a, b;

input ci;

output [3:0] s;

output co;

assign {co, s} = a + b + ci;

endmodule

51

Digital Design of Signal Processing Systems, John Wiley & Sons by Dr. Shoab A. Khan

module mux2_1(in1, in2, sel, out);

input in1, in2, sel;

output out;

assign out = sel ? in2: in1;

endmodule

module stimulus;

reg IN1, IN2, SEL;

wire OUT;

mux2_1 MUX(IN1, IN2, SEL, OUT);

initial

begin

IN1 = 1; IN2 = 0; SEL = 0;

#5 SEL = 1;

#5 IN1 = 0;

end

initial

$monitor($time, ": IN1=%b, IN2=%b, SEL=%b,
OUT=%b\n", IN1, IN2, SEL, OUT);

endmodule

Complete Example: 2:1 Mux

 The module with continuous

assignment

 Stimulus to test the design

52

Digital Design of Signal Processing Systems, John Wiley & Sons by Dr. Shoab A. Khan

Behavioral Modeling

 High level language constructs are used

 for loop

 if else

 while etc

 All statements come in a procedural block

 Two types of procedural blocks

 always

 initial

 A subset of constructs are synthesizable and called
RTL Verilog

53

Digital Design of Signal Processing Systems, John Wiley & Sons by Dr. Shoab A. Khan

Initial and always blocks

 Multiple statements per block

 Procedural assignments

 Timing control

 control
 Initial blocks execute once

 at t = 0
 Always blocks execute continuously

 at t = 0 and repeatedly thereafter

54

Digital Design of Signal Processing Systems, John Wiley & Sons by Dr. Shoab A. Khan

Initial and always blocks

initial

 begin

end

procedural

assignment 1

procedural

assignment 2

procedural

assignment 3

always

 begin

end

procedural

assignment 1

procedural

assignment 2

procedural

assignment 3

55

Digital Design of Signal Processing Systems, John Wiley & Sons by Dr. Shoab A. Khan

Initial Block

 This block starts with initial keyword

 This is non synthesizable

 Non RTL

 This block is used only in stimulus

 All initial blocks execute concurrently in arbitrary

order

 They execute until they come to a #delay operator

 Then they suspend, putting themselves in the

event list delay time units in the future

 At delay units, they resume executing where they

left off
56

Digital Design of Signal Processing Systems, John Wiley & Sons by Dr. Shoab A. Khan

Procedural assignments

 Blocking assignment =

 Regular assignment inside procedural block

 Assignment takes place immediately

 LHS must be a register

always

begin

A = B
B = A

end

A=B, B=B

57

Digital Design of Signal Processing Systems, John Wiley & Sons by Dr. Shoab A. Khan

Procedural assignments

 Nonblocking assignment <=

 Compute RHS

 Assignment takes place at end of block

 LHS must be a register

always

begin

A <= B
B <= A

end

Swap A and B

58

Digital Design of Signal Processing Systems, John Wiley & Sons by Dr. Shoab A. Khan

Blocking Procedural Assignment with three methods

of writing sensitivity list

reg sum, carry;

always @ (x or y)

begin

sum = x^y;

carry = x&y;

end

reg sum, carry;

always @ (x, y)

begin

sum = x^y;

carry = x&y;

End

reg sum, carry;

always @ (*)

begin

sum = x^y;

carry = x&y;

end

(a) (b) (c)

(a) Verilog-95 style (b) Verilog-2001 support of comma separated sensitivity list

(c) Verilog-2001 style that only writes * in the list

59

Digital Design of Signal Processing Systems, John Wiley & Sons by Dr. Shoab A. Khan

Time Control

 $time

 A built-in variable that represents simulated time

 a unitless integer

 $display($time, “a=%d”, a);

 # Time Control

 #<number> statement

 statement is not executed until <number> time units have

passed

 control is released so that other processes can execute

 used in test code

 used to model propagation delay in combinational logic

60

Digital Design of Signal Processing Systems, John Wiley & Sons by Dr. Shoab A. Khan

Time Control

 Delay parameter for a built-in logic gate

 wire c;

 xor #2 x2(c, a, b);

61

Digital Design of Signal Processing Systems, John Wiley & Sons by Dr. Shoab A. Khan

@ Time Control

 @(*)

 @(expression)

 @(expression or expression or …)

 @(posedge onebit)

 @(negedge onebit)

 do not execute statement until event occurs

 @(clk) is same as @(posedge clk or negedge

clk)

62

Digital Design of Signal Processing Systems, John Wiley & Sons by Dr. Shoab A. Khan

Code with non blocking procedural

assignment

reg sum_reg, carry_reg;

always @ (posedge clk)

begin

sum_reg <= x^y;

carry_reg <= x&y;

end

63

Digital Design of Signal Processing Systems, John Wiley & Sons by Dr. Shoab A. Khan

Time Control # and @

$display ($time, “a=%d”, a);

always @ (a or b)

c = a^b; // combinational logic

always @(posedge clk)

c_reg <= c; // sequential register

64

Digital Design of Signal Processing Systems, John Wiley & Sons by Dr. Shoab A. Khan

Sensitivity list

 @ to model combinational logic behaviorally

 Either all inputs in the block must be included in the

sensitivity list

always @ (a, b) // equivalent is (a or b)

c = a^b;

 Or use

always @ (*) // Verilog-2001

c = a^b;

65

Digital Design of Signal Processing Systems, John Wiley & Sons by Dr. Shoab A. Khan

RTL Coding Guidelines: Avoid Combinational Feedback

Combinational

cloud

Combinational

cloud

Combinational

cloud

(a) (b)

Combinational

cloud

Combinational

cloud

Register

rst_n

Combinational

cloud

(a) should be avoided, if logic requires then a resettable

register must be placed in the feedback path (b)

66

Digital Design of Signal Processing Systems, John Wiley & Sons by Dr. Shoab A. Khan

Inferring Resettable Register

(a) Verilog code to infer a register with asynchronous active

low reset (b) Verilog code to infer a register with

asynchronous active high reset

(a) (b)

// register with asynchronous

active low reset

always @ (posedge clk or negedge

rst_n)

begin

If (! rst_n)

r_reg <= 4’b0;

else

r_reg <= data;

end

endmodule

// register with asynchronous

active high reset

always @ (posedge clk or posedge

rst)

begin

If (rst)

r_reg <= 4’b0;

else

r_reg <= data;

end

endmodule

67

Digital Design of Signal Processing Systems, John Wiley & Sons by Dr. Shoab A. Khan

Inferring Resettable Register

(a) Verilog code to infer a register with synchronous

active low reset

(b) Verilog code to infer a register with synchronous

active high reset

// register with synchronous

active low reset

always @ (posedge clk)

begin

If (! rst_n)

r_reg <= 4’b0;

else

r_reg <= data;

end

endmodule

 // register with synchronous

active high reset

 always @ (posedge clk)

 begin

If (rst)

r_reg <= 4’b0;

else

r_reg <= data;

 end

 endmodule

(a) (b)
68

Digital Design of Signal Processing Systems, John Wiley & Sons by Dr. Shoab A. Khan

Using asynchronous reset in implementing an accumulator

// Register with asynchronous active-low reset

always @ (posedge clk or negedge rst_n)

begin

 if(!rst_n)

 acc_reg <= 16’b0;

 else

 acc_reg <= data+acc_reg;

end

// Register with asynchronous active-high reset

always @ (posedge clk or posedge rst)

begin

 if(rst)

 acc_reg <= 16’b0;

 else

 acc_reg <= data+acc_reg;

end

+ 16

clk

acc_reg

rst_n

4

data

Example: An Accumulator

69

Digital Design of Signal Processing Systems, John Wiley & Sons by Dr. Shoab A. Khan

Generating Clock in Stimulus

initial // All the initializations should be in the initial block

begin

clk = 0; // clock signal must be initialized to 0

5 rst_n = 0; // pull active low reset signal to low

2 rst_n=1; // pull the signal back to high

end

always // generate clock in an always block

#10 clk=(~clk);

70

Digital Design of Signal Processing Systems, John Wiley & Sons by Dr. Shoab A. Khan

Conditional Execution: case statement

module mux4_1(in1, in2, in3, in4, sel, out);

input [1:0] sel;

input [15:0] in1, in2, in3, in3;

output [15:0] out;

reg [15:0] out;

always @(*)

case (sel)

2'b00: out = in1;

2'b01: out = in2;

2'b10: out = in3;

2'b11: out = in4;

default: out = 16'bx;

endcase

endmodule

Like C and other high-level programming languages, Verilog supports

switch and case statements for multi-way decision support.

71

Digital Design of Signal Processing Systems, John Wiley & Sons by Dr. Shoab A. Khan

casex and casez statements

 To make comparison with the „don‟t care‟

 casez takes z as don‟t care

 casex takes z and x as don‟t care

always @(op_code)

begin

casez (op_code)

4’b1???: alu_inst(op_code);

4’b01??: mem_rd(op_code);

4’b001?: mem_wr(op_code);

endcase

end

72

Digital Design of Signal Processing Systems, John Wiley & Sons by Dr. Shoab A. Khan

Conditional Statements: if-else

 Verilog supports conditional statements

 if-else

 if-(else if)-else

if (brach_flag)

PC = brach_addr

else

PC = next_addr;

always @(op_code)

begin

if (op_code == 2’b00)

cntr_sgn = 4’b1011;

else if (op_code == 2’b01)

cntr_sgn = 4’b1110;

else

cntr_sgn = 4’b0000;

end

73

Digital Design of Signal Processing Systems, John Wiley & Sons by Dr. Shoab A. Khan

RTL Coding Guideline: Avoid Latches in the Design

 A latch is a storage device that stores a value without the

use of a clock.

 Latches are technology-specific and must be avoided in

synchronous designs

 To avoid latches adhere to coding guidelines

 fully specify assignments or use a default assignment

out_b is not assigned any value under
else, the synthesis tool will infer a latch

input [1:0] sel;
reg [1:0] out_a, out_b;

always @ (*)
begin

if (sel == 2’b00)
begin

out_a = 2’b01;
out_b = 2’b10;

end
else

out_a = 2’b01;
end

74

Digital Design of Signal Processing Systems, John Wiley & Sons by Dr. Shoab A. Khan

Avoiding Latches

 Use default assignments
input [1:0] sel;
reg [1:0] out_a, out_b;

always @ (*)
begin

out_a = 2’b00;
out_b = 2’b00;
if (sel=2’b00)
begin

out_a = 2’b01;
out_b = 2’b10;

end
else

out_a = 2’b01;
end

75

Digital Design of Signal Processing Systems, John Wiley & Sons by Dr. Shoab A. Khan

Avoid Latches

input [1:0] sel;

reg [1:0] out_a, out_b;

always @*

begin

out_a = 2’b00;

out_b = 2’b00;

if (sel==2’b00)

begin

out_a = 2’b01;

out_b = 2’b10;

end

else if (sel == 2’b01)

out_a = 2’b01;

end

 All conditions to be checked

 For if block there must be an else

 For case, either check all conditions or use a default

always @*

begin

out_a = 2’b00;

out_b = 2’b00;

if (sel==2’b00)

begin

out_a = 2’b01;

out_b = 2’b10;

end

else if (sel == 2’b01)

out_a = 2’b01;

else

out_a = 2’b00;

end

76

Digital Design of Signal Processing Systems, John Wiley & Sons by Dr. Shoab A. Khan

Avoid Latches

 Correct use of case statements and

default assignments

always @*

begin

out_a = 2’b00;

out_b = 2’b00;

case (sel)

2’b00:

begin

out_a = 2’b01;

out_b = 2’b10;

end

2’b01:

out_a = 2’b01;

default:

out_a = 2’b00;

endcase

end 77

Digital Design of Signal Processing Systems, John Wiley & Sons by Dr. Shoab A. Khan

Loop Statements

 Loop statements are used to execute a block of statements multiple
times
 repeat, while, for, forever

 In RTL a loop infers multiple instances of the logic in loop body

i=0;

while (i<5)

begin

$display("i=%d\n", i);

i=i+1;

end

i=0;

repeat (5)

begin

$display("i=%d\n", i);

i=i+1;

end

for (i=0; i<5; i=i+1)

begin

$display("i=%d\n", i);

end

78

Digital Design of Signal Processing Systems, John Wiley & Sons by Dr. Shoab A. Khan

Port Definitions

 Input Ports

 Always wire

 Output Ports

 wire if dataflow modeling constructs are used

 reg if behavioral modeling I.e. assignment is

made in a procedural block

 Inout Ports

 always wire

79

Digital Design of Signal Processing Systems, John Wiley & Sons by Dr. Shoab A. Khan

Ports and Data Types

 Arrow analogy

 Head is always wire

 Tail wire or reg

• wire if continuous assignment

• reg is procedural assignment

register/wire wire

wire

wire

register/wire wire

input output

inout

module0
module1 module2

80

Digital Design of Signal Processing Systems, John Wiley & Sons by Dr. Shoab A. Khan

Simulation Control

 $finish Specifies when simulation ends

 $stop Suspends the simulation and enters

interactive mode

 $display Prints output using format similar

to C and creates a new line

 $monitor Similar to $display but active all

the time

81

Digital Design of Signal Processing Systems, John Wiley & Sons by Dr. Shoab A. Khan

$monitor

 Prints its string when one of the listed values

changes

 Only one monitor can be active at any time

 Prints at the end of current simulation time

 Display is like printf()

 $monitor ($time, “A=%d, B=%d, CIN=%b,

SUM=%d, COUT=%d”, A, B, CIN, COUT);

 $display ($time, “A=%d, B=%d, CIN=%b,

SUM=%d, COUT=%d”, A, B, CIN, COUT);

82

Digital Design of Signal Processing Systems, John Wiley & Sons by Dr. Shoab A. Khan

module irr(

input signed [15:0] x,

input clk, rst_n,

output reg signed [31:0] y);

reg signed [31:0] y_reg;

always @(*)

y =(y_reg>>>1) + x; // combinational logic

always @(posedge clk or negedge rst_n) // sequential logic

begin

if (!rst_n)

y_reg <= 0;

else

y_reg <= y;

end

endmodule

The RTL Verilog code implementing a single tap IIR filter

y[n]=0.5y[n-1]+x[n]

Example

83

Digital Design of Signal Processing Systems, John Wiley & Sons by Dr. Shoab A. Khan

Stimulus for the IIR filter design module

module stimulus_irr;

reg [15:0] X;

reg CLK, RST_N;

wire [31:0] Y;

integer i;

irr IRR0(X, CLK, RST_N, Y);

initial

begin

CLK = 0;

#5 RST_N = 0;

#2 RST_N = 1;

end

initial

begin

X = 0;

for(i=0; i<10; i=i+1)
#20 X = X + 1;

$finish;
end

always
#10 CLK = ~CLK;

initial
$monitor($time, " X=%d, sum=%d,

Y=%d", X, IRR0.y, Y);

initial
begin

#60 $stop;
end

endmodule

84

Digital Design of Signal Processing Systems, John Wiley & Sons by Dr. Shoab A. Khan

Timing diagram for the IIR filter design

Value 0 Value 1 Value 2

Value 1 Value 2

x

Value 0

x

x

y_reg

10 time

units

10 time

units

10 time

units
10 time

units
clk

rst_n

y

10 time

units

0

10 time

units

10 time

units
10 time

units

85

Digital Design of Signal Processing Systems, John Wiley & Sons by Dr. Shoab A. Khan

A dump of timing diagram from ModelSim simulator

86

Digital Design of Signal Processing Systems, John Wiley & Sons by Dr. Shoab A. Khan

Usefulness of parameterized model

module adder (a, b, c_in, sum, c_out);

parameter SIZE = 4;

input [SIZE-1: 0] a, b;

output [SIZE-1: 0] sum;

input c_in;

output c_out;

assign {c_out, sum} = a + b + c_in;

endmodule

 Parameters are constants

 A parameter is assigned a default value in the module

 For every instance of this module it can be assigned a

different value

87

Digital Design of Signal Processing Systems, John Wiley & Sons by Dr. Shoab A. Khan

Same module declaration using ANSI style port listing

module adder

#(parameter SIZE = 4)

(input [SIZE-1: 0] a, b,

output [SIZE-1: 0] sum,

input c_in,

output c_out);

88

Digital Design of Signal Processing Systems, John Wiley & Sons by Dr. Shoab A. Khan

Instantiation of the module for adding 8-bit

inputs in1 and in2

module stimulus;

reg [7:0] in1, in2;

wire [7:0] sum_byte;

reg c_in;

wire c_out;

adder #8 add_byte (in1, in2, c_in, sum_byte, c_out);

.

.

endmodule

89

Digital Design of Signal Processing Systems, John Wiley & Sons by Dr. Shoab A. Khan

In Verilog the parameter value can also be

specified by name

adder #(.SIZE(8)) add_byte (in1, in2, c_in,

sum_byte, c_out);

90

Digital Design of Signal Processing Systems, John Wiley & Sons by Dr. Shoab A. Khan

Parameterized code

module adder

#(parameter SIZE1 = 4, SIZE2=6)

(input [SIZE1-1: 0] a,

Input [SIZE2-1: 0] b,

output [SIZE2-1: 0] sum,

input c_in,

output c_out);

91

Digital Design of Signal Processing Systems, John Wiley & Sons by Dr. Shoab A. Khan

Loading memory data from a file

 $readmemb (“memory.dat”, mem);

The statement loads data in memory.dat file into mem.

92

Digital Design of Signal Processing Systems, John Wiley & Sons by Dr. Shoab A. Khan

Macros

`define DIFFERENCE 6‟b011001

The use of the define tag is shown here.

if (ctrl == `DIFFERENCE)

93

Digital Design of Signal Processing Systems, John Wiley & Sons by Dr. Shoab A. Khan

Preprocessing commands

`ifdef G723

$display (“G723 execution”);

`else

$display (“other codec execution”);

`endif

94

Digital Design of Signal Processing Systems, John Wiley & Sons by Dr. Shoab A. Khan

 Instead of making multiple copy of common code,
it can be written as a task and called multiple
times

 Task definition occurs inside a module
 Task is called only from initial and always blocks and

other tasks in that module

 Task contains any behavioral statements,
including time control

 Order of input, output, and inout definitions
determines binding of arguments
 input argument may not be reg

 output arguments must be reg

Task

95

Digital Design of Signal Processing Systems, John Wiley & Sons by Dr. Shoab A. Khan

task name;

input arguments;

output arguments;

inout arguments;

…

declarations;

begin

statement;

…

end

endtask

Task template

96

Digital Design of Signal Processing Systems, John Wiley & Sons by Dr. Shoab A. Khan

Example: Task
module RCA(

input [3:0] a, b,

input c_in,

output reg c_out,

output reg [3:0] sum

);

reg carry[4:0];

integer i;

task FA(

input in1, in2, carry_in,

output reg out, carry_out);

{carry_out, out} = in1 + in2 + carry_in;

endtask

always@*

begin

carry[0]=c_in;

for(i=0; i<4; i=i+1)

begin

FA(a[i], b[i], carry[i], sum[i], carry[i+1]);

end

c_out = carry[4];

end

endmodule

97

Digital Design of Signal Processing Systems, John Wiley & Sons by Dr. Shoab A. Khan

Functions

 The common code can also be written as function

 Function implements combinational behavior

 No timing controls or tasks

 May call other functions with no recursion

 No output or inout allowed

 Output is an implicit register having name and

range of function

98

Digital Design of Signal Processing Systems, John Wiley & Sons by Dr. Shoab A. Khan

Functions template

Syntax:

function_declaration

function [range or type] function_identifier;

function_call

function_identifier (expression {, expression})

99

Digital Design of Signal Processing Systems, John Wiley & Sons by Dr. Shoab A. Khan

Example: Function
module MUX4to1(

input [3:0] in,

input [1:0] sel,

output out);

wire out1, out2;

function MUX2to1;

input in1, in2;

input select;

assign MUX2to1 = select ? in2:in1;

endfunction

assign out1 = MUX2to1(in[0], in[1], sel[0]);

assign out2 = MUX2to1(in[2], in[3], sel[0]);

assign out = MUX2to1(out1, out2, sel[1]);

endmodule

module testFunction;

reg [3:0] IN;

reg [1:0] SEL;

wire OUT;

MUX4to1 mux(IN, SEL, OUT);

initial

begin

IN = 1;

SEL = 0;

#5 IN = 7;

SEL = 0;

#5 IN = 2; SEL=1;

#5 IN = 4; SEL = 2;

#5 IN = 8; SEL = 3;

end

initial

$monitor($time, " %b %b %b\n", IN, SEL, OUT);

endmodule 100

Digital Design of Signal Processing Systems, John Wiley & Sons by Dr. Shoab A. Khan

CASE STUDY of design of a communication

receiver is covered in the book

101

Digital Design of Signal Processing Systems, John Wiley & Sons by Dr. Shoab A. Khan

Verilog Testbench

 A testbench facilitates verification of a design or

module by providing test vectors and comparing

the response to the expected response

 The design (top- evel module) is instantiated

inside the testbench, and a model or expected

outputs are used to evaluate the response

 Constructs that are not synthesizable can be

used in stimulus

102

Digital Design of Signal Processing Systems, John Wiley & Sons by Dr. Shoab A. Khan

RTL

COMPARISON

simulator

Test Vectors

TRUE

FALSE

log ERROR

Testing RTL Design

 Make a simulation

model

 Generate and give

test vectors to both

 Test against the

model

103

Digital Design of Signal Processing Systems, John Wiley & Sons by Dr. Shoab A. Khan

Behavioral Modeling

 A set of inputs is applied and the
outputs are checked

 against the specification or

 expected output

 No consideration to the inner
details of the system

 Testing against specifications while
making use of the known internal
structure of the system.

 Enables easy location of bug for
quick fixing

 Performed by the developer

Test Cases

generation
DUT

Comparisons

Log the

values in

case of

mismatch

stimulus

actual

Output

expected

Output

diff

Test Cases

generation

Log the

values in

case of

mismatch

stimulus

actual

Output

expected

Output

diff

Comparisons

Expected interval state

Actual

interval

state

(a) Black-box testing (b) While-box level testing

104

Digital Design of Signal Processing Systems, John Wiley & Sons by Dr. Shoab A. Khan

An Example Verification Setup

Transactor

C++ test vector

generator

Checker Transactor

C++ Implementation

Coverage

TLM

Transactor

C++ test vector

generator

Checker Transactor

C++ Implementation

Coverage

DUT

Driver Monitor

RTL

TRANSLATOR

TLM

105

Digital Design of Signal Processing Systems, John Wiley & Sons by Shoab A. Khan

Adv Digital Design Contents

System Verilog

106

Digital Design of Signal Processing Systems, John Wiley & Sons by Dr. Shoab A. Khan

SystemVerilog

 SystemVerilog (SV) offers a unified language

that is very powerful to model complex systems

 SV advanced constructs facilitate concise writing

of test benches and analyzing the coverage.

 Most of the EDA tool vendors are continuously

adding support of SV

107

Digital Design of Signal Processing Systems, John Wiley & Sons by Dr. Shoab A. Khan

Additional data types in SystemVerilog

Data Type Description States Example

logic User defined 4 states 0,1, x ,z logic [15:0] a,b;

int 32 bit signed 2 states 0,1 int num;

bit User defined 2 states 0,1 bit [5:0] in;

byte 8 bit signed 2 states 0,1 byte t;

longint 64 bit signed 2 states 0,1 longint p;

shortint 16 bit signed 2 states 0,1 shortint q;

108

Digital Design of Signal Processing Systems, John Wiley & Sons by Dr. Shoab A. Khan

Data Types

 A logic type is similar to a reg

 Can take any one of the four values 0,1,x,z

 In rest of the data types each bit can be a

0 and 1.

 These variables are auto initialized to 0 at

time zero

109

Digital Design of Signal Processing Systems, John Wiley & Sons by Dr. Shoab A. Khan

Packed & unpacked 1-D and 2-D arrays

bit up_data [15:0];

bit [31:0] up_mem [0:511];

bit [15:0] p_data;

bit [31:0][0:511] p_mem1, p_mem2;

slice_data = up_mem [2][31:15]; // most significant byte at mem location 2

add_mem = p_mem1 + p_mem2;

bit [15:0] array[];

array = new[1023];

SV can operate on an entire two-dimensional (2-D) array of packed data

Unpacked arrays can be operated only on an indexed value

Dynamic arrays can also be declared as

110

Digital Design of Signal Processing Systems, John Wiley & Sons by Dr. Shoab A. Khan

Module Instantiation and Port Listing

module FA(in1, in2, sum, clk, rest_n);

 Assuming the instance has first three ports
with the same name, the instance can be
written as

FA ff (.in1, .sum, .in2, .clk(clk_global), .rest_n
(rst_n));

 Or more concisely as

FA ff (.*, .clk(clk_global), .rest_n (rst_n));

111

Digital Design of Signal Processing Systems, John Wiley & Sons by Dr. Shoab A. Khan

C/C++ like Constructs

• typedef, struct and enum

typedef bit [15:0] addr;

typedef struct {

addr src;

addr dst;

bit [31:0] data;

} packet_tcp;

module packet (input packet_tcp packet_in,

input clk,

output packet_tcp packet_out);

always_ff @(posedge clk)

begin

packet_out.dst <= packet_in.src;

packet_out.src <= packet_in.dst;

packet_out.data <= ~packet_in.data;

end

endmodule

112

Digital Design of Signal Processing Systems, John Wiley & Sons by Dr. Shoab A. Khan

Enum

typedef enum logic [2:0]

{ idle = 0,

read = 3,

dec, // = 4

exe

} states;

states pipes;

The enum can also be directly defined as
enum {idle, read=3, dec, exe} pipes;

case (pipes)

idle: pc = pc;

read: pc = pc+1;

.

.

endcase

113

Digital Design of Signal Processing Systems, John Wiley & Sons by Dr. Shoab A. Khan

Operators

 Operand1 Op = Operand2

X += 2;

 Increment/decrement

Op ++, Op--, ++Op, --Op

i++

114

Digital Design of Signal Processing Systems, John Wiley & Sons by Dr. Shoab A. Khan

for and do-while Loops

do

begin

if (sel_1 == 0)

continue;

if (sel_2 == 3) break;

end

while (sel_2==0);

for(integer i=0, j=0, k=0; i+j+k < 20; i++, j++, k++)

115

Digital Design of Signal Processing Systems, John Wiley & Sons by Dr. Shoab A. Khan

Procedural Block: always

module adder(input signed [3:0] in1, in2,

input clk, rst_n,

output logic signed [15:0] acc);

logic signed [15:0] sum;

// combinational block

always_comb

begin: adder

sum = in1 + in2 + acc;

end: adder

// sequential block

always_ff @(posedge clk or negedge rst_n)

if (!rst_n)

acc <= 0;

else

acc <= sum;

endmodule

always_comb , always_latch and always_ff
SV solves the issue of sensitivity list

116

Digital Design of Signal Processing Systems, John Wiley & Sons by Dr. Shoab A. Khan

Procedural Block: final

final

begin

$display($time, “ simulation time, the simulation ends\n”);
end

117

Digital Design of Signal Processing Systems, John Wiley & Sons by Dr. Shoab A. Khan

Unique and Priority case statements

User guarantees that all cases are handled in the coding and each
case will only uniquely match with one of the selection

always @*

unique case (sel) //equivalent to full-case parallel-case

2’b00: out = in0;
2’b01: out = in1;
2’b10: out = in2;
2’b11: out = in3;
default: out = ‘x;

endcase

118

Digital Design of Signal Processing Systems, John Wiley & Sons by Dr. Shoab A. Khan

Priority case

The priority case is used in instances where the programmer intends to

prioritize the

selection and more than one possible match is possible
always @*

priority case (1’b1) //equivalent to full-case synthesis
directive

irq1: out = in0;

irq3: out = in1;

irq2: out = in2;

ir: out = in3;

default: out = ‘x;
endcase

119

Digital Design of Signal Processing Systems, John Wiley & Sons by Dr. Shoab A. Khan

Priority case

always @*
unique case (sel) //equivalent to full-case parallel-

case synthesis directive
2’b00: out = in0;
2’b01: out = in1;
2’b10: out = in2;
2’b11: out = in3;
default: out = ‘x;

endcase

User guarantees that all cases are handled in the coding and each case

will only uniquely match with one of the selections

120

Digital Design of Signal Processing Systems, John Wiley & Sons by Dr. Shoab A. Khan

Nested Modules

module accumulator(input clk, rst_n, input [7:0] data, output bit [15:0] acc);

always_ff @ (posedge clk)

begin

if (!rst_n)

acc <= 0;

else

acc <= acc + data;

end

endmodule

logic clk=0;

always #1 clk = ~clk;

logic rst_n;

logic [7:0] data;

logic [15:0] acc_reg;

accumulator acc_inst(clk, rst_n, data, acc_reg);

initial

begin

rst_n = 0;

#10 rst_n = 1;

data = 2;

#200 $finish;

end

initial

$monitor($time, "%d, %d\n", data, acc_reg);

endmodule

121

Digital Design of Signal Processing Systems, John Wiley & Sons by Dr. Shoab A. Khan

SV Function

 No begin and end to place multiple

statements

 SV functions can return a void.

 Addition of the return statement is also

added

 The input and output can also be passed

by name

122

Digital Design of Signal Processing Systems, John Wiley & Sons by Dr. Shoab A. Khan

Functions and Tasks

function void expression (input integer a, b, c, output integer d);

d = a+b-c;

endfunction: expression

function integer divide (input integer a, b);
if (b)

divide = a/b;
else
begin

$display(“divide by 0\n”);
return (‘hx);

end
// rest of the function

.

.
endfunction: divide

123

Digital Design of Signal Processing Systems, John Wiley & Sons by Dr. Shoab A. Khan

Interface

 A major addition

 It encapsulates connectivity and replaces a

group of ports and their interworking with a

single identity

 The interface can contain

 Parameters

 Constants

 Variables

 functions and tasks.

124

Digital Design of Signal Processing Systems, John Wiley & Sons by Dr. Shoab A. Khan

A Local Bus interface between two modules

32

8

addr

1
rqst

1
grant

1

done

data

Local Bus

125

interface local_bus(input logic clk);

bit rqst;

bit grant;

bit rw;

bit [4:0] addr;

wire [7:0] data;

modport tx (input grant,

output rqst, addr,rw,

inout data,

input clk);

modport rx (output grant,

input rqst, addr, rw,

inout data,

input clk);

endinterface

module src (input bit , clk,

local_bus.tx busTx);

integer i;

logic [7:0] value = 0;

assign busTx.data = value;

initial

begin

busTx.rw = 1;

for (i=0; i<32; i++)

begin126

#2 busTx.addr = i;
value += 1;

end
busTx.rw = 0;

end
// rest of the modules detail here
endmodule

module dst (input bit clk,
local_bus.rx busRx);
logic [7:0] local_mem [0:31];

always @(posedge clk)
if (busRx.rw)
local_mem[busRx.addr] = busRx.data;

endmodule

// In the top-level module these modules are instantiated with interface declaration.
module local_bus_top;

logic clk = 0;
local_bus bus(clk); // the interface declaration

always #1 clk = ~clk;

src SRC (clk, bus.tx);
dst DST (clk, bus.rx);

initial
$monitor ($time, "\t%d %d %d %d\n", bus.rx.rw, bus.rx.addr, bus.rx.data, DST.local_mem[bus.rx.addr]);

endmodule

127

Digital Design of Signal Processing Systems, John Wiley & Sons by Dr. Shoab A. Khan

Class

 A class consists of data and methods.

 The methods are functions and tasks that

operate on the data in the class.

 SV supports key aspects of OOP

 Inheritance

 encapsulation

 polymorphism

128

Digital Design of Signal Processing Systems, John Wiley & Sons by Dr. Shoab A. Khan

Classes

class frame{
byte dst_addr;
bit [3:0] set_frame_type;
data_struct payload;
function byte get_src_addr ()

return src_addr;
endfunction
extern task assign_dst_addr_type (input byte addr, input bit[3:0] type);

endclass

task frame::assign_dst_addr(input byte addr, input bit [3:0] type);
dst_addr = addr;
frame_type = type;

endtask

129

Digital Design of Signal Processing Systems, John Wiley & Sons by Dr. Shoab A. Khan

frame first_frame = new;

A class constructor can also be used to initialize data as

class frame{
.
.
function new (input byte addr, input [3:0] type)

dst_addr = addr;
frame_type = type;

endfunction
.
.
endclass

130

Digital Design of Signal Processing Systems, John Wiley & Sons by Dr. Shoab A. Khan

frame msg_frame = new(8’h00, MSG); // set the dst and type of the frame

class warning_frame extends frame;
bit [2:0] warning_type;

function MSG_TYPE send_warning ();
return warning_type;

endfuction;
endclass

131

Digital Design of Signal Processing Systems, John Wiley & Sons by Dr. Shoab A. Khan

Direct Programming Interface

 SV can directly access a function written in C

using a DPI

 A function or task written in SV can be exported

to a C program.

 Interworking of C and SV code very trivial

 The C functions in SV are called using import

directive,

 While functions and tasks of SV in a C function

are accessible by using export DPI declaration

132

Digital Design of Signal Processing Systems, John Wiley & Sons by Dr. Shoab A. Khan

Direct Programming Interface (DPI)

// top level module that instantiates a module that Calls a C function
module top_level();

moduleCall_C Call_C (rst, clk, in1, in2, out1, …);
.
.
.
endmodule

The instantiated module Call_C of type moduleCall_C uses import directive for interfacing with C program.

module moduleCall_C(rst, clk, in1, in2, out1,...);
.
.
import "DPI-C" context task fuctionC (....);

always@(posedge clk)
functionC (rst,in1, in2, out1,....);

export "DPI-C" task CallVeri1;
export "DPI-C" task CallVeri2;

task CallVeri1 (input int addr1, output int data1);
.
.
endtask
task CallVeri2 (input int addr2, output int data2);
.
.
endtask
.
.
endmodule

133

Digital Design of Signal Processing Systems, John Wiley & Sons by Dr. Shoab A. Khan

// required header files

void fuctionC (int rst,)
{
.
.

rest = rst;
.

funct1(...);
funct2(...);

.

.
}

void funct1 (void)
{
.
.

CallVeri1(....);
.
}

void funct2 (void)
{
.
.

CallVeri2(....);
.
}

134

Digital Design of Signal Processing Systems, John Wiley & Sons by Dr. Shoab A. Khan

Assertion

 SV supports two types of assertions

 immediate

 concurrent

 The immediate assertion is like an if-else statemen

 The expression in assert is checked for the desired
behavior

 If this expression fails

 SV provides one of the three severity system tasks
• $warning, $error and $fatal.

 Concurrent assertion checks the validity of a
property

135

Digital Design of Signal Processing Systems, John Wiley & Sons by Dr. Shoab A. Khan

Assertion

assert(value>=5)

else $warning(“Value above range”);

assert property (request && !ready)

assert property (@posedge clk) req |-> ##[2:5] grant);

136

Digital Design of Signal Processing Systems, John Wiley & Sons by Dr. Shoab A. Khan

Package

package FSM_types

// global typedef

typedef enum FSM{INVALID, READ, DECODE, EXECUTE, WRITE} pipelines; bit idle; // global

variable initialize to 0

task invalid_cycle (input [2:0] curret_state) //global task

if (current_state == INVALID)

$display(“invalid state”);

$finish;

endtask: invalid_cycle

endpackage

 SV has borrowed the concept of a package from VHDL.

 Package is used to share user defined type definitions
across multiple modules, interfaces, other programs
and packages

137

Digital Design of Signal Processing Systems, John Wiley & Sons by Dr. Shoab A. Khan

Randomization

bit [15:0] value1, value2;

bit valid;

initial

begin

for(i=0; i<1024; i++)

valid = randomize (value1, value2);

end

end

valid = randomize (value1, value2); with (value1>32; value1 < 1021);

 SV supports unconstrained and constrained random
value generation

 Very useful to generate random test vectors for stimulus

138

Digital Design of Signal Processing Systems, John Wiley & Sons by Dr. Shoab A. Khan

Coverage

module stimulus;
logic [15:0] operand1, operand2;
.
.

covergroup cg_operands @ (posedge clk)
o1: coverpoint = operand1;
o2: coverpoint = operand2;

endgroup : cg_operands
.
.
cg_operands cover_ops = new();
.
endmodule

covergroup cg_operands @ (posedge clk)
o1: coverpoint = operand1 {
bins low = {0,63};
bins med = {64,127};
bins high = {128,255};

}
o2: coverpoint = operand2 {
bins low = {0,63};
bins med = {64,127};
bins high = {128,255};

}
endgroup : cg_operands.

•Coverage quantitatively measure the extent
that the functioning of a DUT is
•Verified
•The statistics are gathered using coverage
groups
•The user lists variables as converpoints

139

Digital Design of Signal Processing Systems, John Wiley & Sons by Dr. Shoab A. Khan

Summary

 Signal processing applications are first algorithmically

implemented using tools like Matlab

 The algorithmic description is then partitioned into HW

and SW parts

 HW is designed at RTL and implemented in HDL

 Verilog is an HDL

 The designer must adhere to coding guide lines for

effective synthesis of the design

 Verification of the RTL design is very critical and must

be carefully crafted

 System Verilog adds more features for design and

verification of digital designs

140

